ترغب بنشر مسار تعليمي؟ اضغط هنا

Symmetry-enforced band crossings in tetragonal materials: Dirac and Weyl degeneracies on points, lines, and planes

147   0   0.0 ( 0 )
 نشر من قبل Moritz Hirschmann
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the occurrence of symmetry-enforced topological band crossings in tetragonal crystals with strong spin-orbit coupling. By computing the momentum dependence of the symmetry eigenvalues and the global band topology in the entire Brillouin zone, we determine all symmetry-enforced band crossings in tetragonal space groups. In particular, we classify all Dirac and Weyl degeneracies on points, lines, and planes, and find a rich variety of topological degeneracies. This includes, among others, double Weyl points, fourfold-double Weyl points, fourfold-quadruple Weyl points, Weyl and Dirac nodal lines, as well as topological nodal planes. For the space groups with symmetry-enforced Weyl points, we determine the minimal number of Weyl points for a given band pair and, remarkably, find that materials in space groups 119 and 120 can have band pairs with only two Weyl points in the entire Brillouin zone. This simplifies the topological responses, which would be useful for device applications. Using the classification of symmetry-enforced band crossings, we perform an extensive database search for candidate materials with tetragonal space groups. Notably, we find that Ba$_5$In$_4$Bi$_5$ and NaSn$_5$ exhibit twofold and fourfold Weyl nodal lines, respectively, which cross the Fermi energy. Hf$_3$Sb and Cs$_2$Tl$_3$ have band pairs with few number of Weyl points near the Fermi energy. Furthermore, we show that Ba$_3$Sn$_2$ has Weyl points with an accordion dispersion and topological nodal planes, while AuBr and Tl$_4$PbSe$_3$ possess Dirac points with hourglass dispersions. For each of these candidate materials we present the ab-initio band structures and discuss possible experimental signatures of the nontrivial band topology.

قيم البحث

اقرأ أيضاً

Nonsymmoprhic symmetries, such as screw rotations or glide reflections, can enforce band crossings within high-symmetry lines or planes of the Brillouin zone. When these band degeneracies are close to the Fermi energy, they can give rise to a number of unusual phenomena: e.g., anomalous magnetoelectric responses, transverse Hall currents, and exotic surface states. In this paper, we present a comprehensive classification of such nonsymmorphic band crossings in trigonal materials with strong spin-orbit coupling. We find that in trigonal systems there are two different types of nonsymmorphic band degeneracies: (i) Weyl points protected by screw rotations with an accordion-like dispersion, and (ii) Weyl nodal lines protected by glide reflections. We report a number of existing materials, where these band crossings are realized near the Fermi energy. This includes Cu2SrSnS4 and elemental tellurium (Te), which exhibit accordion Weyl points; and the tellurium-silicon clathrate Te16Si38, which shows Weyl nodal lines. The ab-initio band structures and surface states of these materials are studied in detail, and implications for experiments are briefly discussed.
We identify all symmetry-enforced band crossings in nonmagnetic orthorhombic crystals with and without spin-orbit coupling and discuss their topological properties. We find that orthorhombic crystals can host a large number of different band degenera cies, including movable Weyl and Dirac points with hourglass dispersions, fourfold double Weyl points, Weyl and Dirac nodal lines, almost movable nodal lines, nodal chains, and topological nodal planes. Interestingly, spin-orbit coupled materials in the space groups 18, 36, 44, 45, and 46 can have band pairs with only two Weyl points in the entire Brillouin zone. This results in a simpler connectivity of the Fermi arcs and more pronounced topological responses than in materials with four or more Weyl points. In addition, we show that the symmetries of the space groups 56, 61, and 62 enforce nontrivial weak $mathbb{Z}_2$ topology in materials with strong spin-orbit coupling, leading to helical surface states. With these classification results in hand, we perform extensive database searches for orthorhombic materials crystallizing in the relevant space groups. We find that Sr$_2$Bi$_3$ and Ir$_2$Si have bands crossing the Fermi energy with a symmetry-enforced nontrivial $mathbb{Z}_2$ invariant, CuIrB possesses nodal chains near the Fermi energy, Pd$_7$Se$_4$ and Ag$_2$Se exhibit fourfold double Weyl points, the latter one even in the absence of spin-orbit coupling, whereas the fourfold degeneracies in AuTlSb are made up from intersecting nodal lines. For each of these examples we compute the ab-initio band structures, discuss their topologies, and for some cases also calculate the surface states.
Dirac semimetals, the materials featured with discrete linearly crossing points (called Dirac points) between four bands, are critical states of topologically distinct phases. Such gapless topological states have been accomplished by a band-inversion mechanism, in which the Dirac points can be annihilated pairwise by perturbations without changing the symmetry of the system. Here, we report an experimental observation of Dirac points that are enforced completely by the crystal symmetry, using a nonsymmorphic three-dimensional phononic crystal. Intriguingly, our Dirac phononic crystal hosts four spiral topological surface states, in which the surface states of opposite helicities intersect gaplessly along certain momentum lines, as confirmed by our further surface measurements. The novel Dirac system may release new opportunities for studying the elusive (pseudo)relativistic physics, and also offer a unique prototype platform for acoustic applications.
We report the identification of symmetry-enforced nodal planes (NPs) in CoSi providing the missing topological charges in an entire network of band-crossings comprising in addition multifold degeneracies and Weyl points, such that the fermion doublin g theorem is satisfied. In our study we have combined measurements of Shubnikov-de Haas (SdH) oscillations in CoSi with material-specific calculations of the electronic structure and Berry curvature, as well as a general analysis of the band topology of space group (SG) 198. The observation of two nearly dispersionless SdH frequency branches provides unambiguous evidence of four Fermi surface sheets at the R point that reflect the symmetry-enforced orthogonality of the underlying wave functions at the intersections with the NPs. Hence, irrespective of the spin-orbit coupling strength, SG198 features always six- and fourfold degenerate crossings at R and $Gamma$ that are intimately connected to the topological charges distributed across the network.
Flat bands have band crossing points with other dispersive bands in many systems including the canonical flat band models in the Lieb and kagome lattices. Here we show that some of such band degeneracy points are unavoidable because of the symmetry r epresentation (SR) of the flat band under unitary symmetry. We refer to such a band degeneracy point of flat bands as a SR-enforced band crossing. SR-enforced band crossing is distinct from the conventional band degeneracy protected by symmetry eigenvalues or topological charges in that its protection requires both specific symmetry representation and band flatness of the flat band, simultaneously. Even $n$-fold rotation $C_n$ ($n=2,3,4,6$) symmetry, which cannot protect band degeneracy without additional symmetries due to its abelian nature, can protect SR-enforced band crossings in flat band systems. In two-dimensional flat band systems with $C_n$ symmetry, when the degeneracy of a SR-enforced band crossing is lifted by a $C_n$ symmetry-preserving perturbation, we obtain a nearly flat Chern band. Our theory not only explains the origin of the band crossing points of FBs existing in various models, but also gives a strict no-go theorem for isolated FBs in a given lattice arising from the SR.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا