ترغب بنشر مسار تعليمي؟ اضغط هنا

The Forgotten Role of Search Queries in IR-based Bug Localization: An Empirical Study

121   0   0.0 ( 0 )
 نشر من قبل Mohammad Masudur Rahman
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Being light-weight and cost-effective, IR-based approaches for bug localization have shown promise in finding software bugs. However, the accuracy of these approaches heavily depends on their used bug reports. A significant number of bug reports contain only plain natural language texts. According to existing studies, IR-based approaches cannot perform well when they use these bug reports as search queries. On the other hand, there is a piece of recent evidence that suggests that even these natural language-only reports contain enough good keywords that could help localize the bugs successfully. On one hand, these findings suggest that natural language-only bug reports might be a sufficient source for good query keywords. On the other hand, they cast serious doubt on the query selection practices in the IR-based bug localization. In this article, we attempted to clear the sky on this aspect by conducting an in-depth empirical study that critically examines the state-of-the-art query selection practices in IR-based bug localization. In particular, we use a dataset of 2,320 bug reports, employ ten existing approaches from the literature, exploit the Genetic Algorithm-based approach to construct optimal, near-optimal search queries from these bug reports, and then answer three research questions. We confirmed that the state-of-the-art query construction approaches are indeed not sufficient for constructing appropriate queries (for bug localization) from certain natural language-only bug reports although they contain such queries. We also demonstrate that optimal queries and non-optimal queries chosen from bug report texts are significantly different in terms of several keyword characteristics, which has led us to actionable insights. Furthermore, we demonstrate 27%--34% improvement in the performance of non-optimal queries through the application of our actionable insights to them.



قيم البحث

اقرأ أيضاً

Software engineers spend a substantial amount of time using Web search to accomplish software engineering tasks. Such search tasks include finding code snippets, API documentation, seeking help with debugging, etc. While debugging a bug or crash, one of the common practices of software engineers is to search for information about the associated error or exception traces on the internet. In this paper, we analyze query logs from a leading commercial general-purpose search engine (GPSE) such as Google, Yahoo! or Bing to carry out a large scale study of software exceptions. To the best of our knowledge, this is the first large scale study to analyze how Web search is used to find information about exceptions. We analyzed about 1 million exception related search queries from a random sample of 5 billion web search queries. To extract exceptions from unstructured query text, we built a novel and high-performance machine learning model with a F1-score of 0.82. Using the machine learning model, we extracted exceptions from raw queries and performed popularity, effort, success, query characteristic and web domain analysis. We also performed programming language-specific analysis to give a better view of the exception search behavior. These techniques can help improve existing methods, documentation and tools for exception analysis and prediction. Further, similar techniques can be applied for APIs, frameworks, etc.
Millions of open-source projects with numerous bug fixes are available in code repositories. This proliferation of software development histories can be leveraged to learn how to fix common programming bugs. To explore such a potential, we perform an empirical study to assess the feasibility of using Neural Machine Translation techniques for learning bug-fixing patches for real defects. First, we mine millions of bug-fixes from the change histories of projects hosted on GitHub, in order to extract meaningful examples of such bug-fixes. Next, we abstract the buggy and corresponding fixed code, and use them to train an Encoder-Decoder model able to translate buggy code into its fixed version. In our empirical investigation we found that such a model is able to fix thousands of unique buggy methods in the wild. Overall, this model is capable of predicting fixed patches generated by developers in 9-50% of the cases, depending on the number of candidate patches we allow it to generate. Also, the model is able to emulate a variety of different Abstract Syntax Tree operations and generate candidate patches in a split second.
The performance of fault localization techniques is critical to their adoption in practice. This paper reports on an empirical study of a wide range of fault localization techniques on real-world faults. Different from previous studies, this paper (1 ) considers a wide range of techniques from different families, (2) combines different techniques, and (3) considers the execution time of different techniques. Our results reveal that a combined technique significantly outperforms any individual technique (200% increase in faults localized in Top 1), suggesting that combination may be a desirable way to apply fault localization techniques and that future techniques should also be evaluated in the combined setting. Our implementation is publicly available for evaluating and combining fault localization techniques.
Numerous efforts have been invested in improving the effectiveness of bug localization techniques, whereas little attention is paid to making these tools run more efficiently in continuously evolving software repositories. This paper first analyzes t he information retrieval model behind a classic bug localization tool, BugLocator, and builds a mathematical foundation illustrating that the model can be updated incrementally when codebase or bug reports evolve. Then, we present IncBL, a tool for Incremental Bug Localization in evolving software repositories. IncBL is evaluated on the Bugzbook dataset, and the results show that IncBL can significantly reduce the running time by 77.79% on average compared with the re-computing the model, while maintaining the same level of accuracy. We also implement IncBL as a Github App that can be easily integrated into open-source projects on GitHub. Users can deploy and use IncBL locally as well. The demo video for IncBL can be viewed at https://youtu.be/G4gMuvlJSb0, and the source code can be found at https://github.com/soarsmu/IncBL.
Context: Interest in software engineering (SE) methodologies and tools has been complemented in recent years by research efforts oriented towards understanding the human processes involved in software development. This shift has been imperative given reports of inadequately performing teams and the consequent growing emphasis on individuals and team relations in contemporary SE methods. Objective: While software repositories have frequently been studied with a view to explaining such human processes, research has tended to use primarily quantitative analysis approaches. There is concern, however, that such approaches can provide only a partial picture of the software process. Given the way human behavior is nuanced within psychological and social contexts, it has been asserted that a full understanding may only be achieved through deeper contextual enquiries. Method: We have followed such an approach and have applied data mining, SNA, psycholinguistic analysis and directed content analysis (CA) to study the way core developers at IBM Rational Jazz contribute their social and intellectual capital, and have compared the attitudes, interactions and activities of these members to those of their less active counterparts. Results: Among our results, we uncovered that Jazzs core developers worked across multiple roles, and were crucial to their teams organizational, intra-personal and inter-personal processes. Additionally, although these individuals were highly task- and achievement-focused, they were also largely responsible for maintaining positive team atmosphere, and for providing context awareness in support of their colleagues. Conclusion: Our results suggest that high-performing distributed agile teams rely on both individual and collective efforts, as well as organizational environments that promote informal and organic work structures.(Abridged)

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا