ﻻ يوجد ملخص باللغة العربية
We propose the use of trapped ions for detection of millicharged dark matter. Millicharged particles will scatter off the ions, giving a signal either in individual events or in the overall heating rate of the ions. Ion traps have several properties which make them ideal detectors for such a signal. First, ion traps have demonstrated significant isolation of the ions from the environment, greatly reducing the background heating and event rates. Second, ion traps can have low thresholds for detection of energy deposition, down to $sim text{neV}$. Third, since the ions are charged, they naturally have large cross sections for scattering with the millicharged particles, further enhanced by the low velocities of the thermalized millicharges. Despite ion-trap setups being optimized for other goals, we find that existing measurements put new constraints on millicharged dark matter which are many orders of magnitude beyond previous bounds. For example, for a millicharge dark matter mass $m_Q=10~textrm{GeV}$ and charge $10^{-3}$ of the electron charge, ion traps limit the local density to be $n_Q lesssim 1 , textrm{cm}^{-3}$, a factor $sim 10^8$ better than current constraints. Future dedicated ion trap experiments could reach even further into unexplored parameter space.
We investigate the cosmological stability of light bosonic dark matter carrying a tiny electric charge. In the wave-like regime of high occupation numbers, annihilation into gauge bosons can be drastically enhanced by parametric resonance. The millic
Inelastic dark matter reconciles the DAMA anomaly with other null direct detection experiments and points to a non-minimal structure in the dark matter sector. In addition to the dominant inelastic interaction, dark matter scattering may have a subdo
We identify potentially the worlds most sensitive location to search for millicharged particles in the 10 MeV to 100 GeV mass range: the forward region at the LHC. We propose constructing a scintillator-based experiment, FORward MicrOcharge SeArch (F
Identifying the true theory of dark matter depends crucially on accurately characterizing interactions of dark matter (DM) with other species. In the context of DM direct detection, we present a study of the prospects for correctly identifying the lo
In this work we introduce RAPIDD, a surrogate model that speeds up the computation of the expected spectrum of dark matter particles in direct detection experiments. RAPIDD replaces the exact calculation of the dark matter differential rate (which in