ﻻ يوجد ملخص باللغة العربية
We identify potentially the worlds most sensitive location to search for millicharged particles in the 10 MeV to 100 GeV mass range: the forward region at the LHC. We propose constructing a scintillator-based experiment, FORward MicrOcharge SeArch (FORMOSA) in this location, and estimate the corresponding sensitivity projection. We show that FORMOSA can discover millicharged particles in a large and unexplored parameter space, and study strongly interacting dark matter that cannot be detected by ground-based direct-detection experiments. The newly proposed LHC Forward Physics Facility (FPF) provides an ideal structure to host the full FORMOSA experiment.
This report, based on the Dark Sectors workshop at SLAC in April 2016, summarizes the scientific importance of searches for dark sector dark matter and forces at masses beneath the weak-scale, the status of this broad international field, the importa
Dark sectors, consisting of new, light, weakly-coupled particles that do not interact with the known strong, weak, or electromagnetic forces, are a particularly compelling possibility for new physics. Nature may contain numerous dark sectors, each wi
Dark Yang-Mills sectors, which are ubiquitous in the string landscape, may be reheated above their critical temperature and subsequently go through a confining first-order phase transition that produces stochastic gravitational waves in the early uni
We propose the use of trapped ions for detection of millicharged dark matter. Millicharged particles will scatter off the ions, giving a signal either in individual events or in the overall heating rate of the ions. Ion traps have several properties
We investigate the cosmological stability of light bosonic dark matter carrying a tiny electric charge. In the wave-like regime of high occupation numbers, annihilation into gauge bosons can be drastically enhanced by parametric resonance. The millic