ﻻ يوجد ملخص باللغة العربية
Quivers, gauge theories and singular geometries are of great interest in both mathematics and physics. In this note, we collect a few open questions which have arisen in various recent works at the intersection between gauge theories, representation theory, and algebraic geometry. The questions originate from the study of supersymmetric gauge theories in different dimensions with different supersymmetries. Although these constitute merely the tip of a vast iceberg, we hope this guide can give a hint of possible directions in future research. This is an invited contribution to a special volume of Proyecciones, E. Gasparim, Ed., and it is the hope that the questions are specific enough for research projects aimed at PhD students.
Reflexive polygons have been extensively studied in a variety of contexts in mathematics and physics. We generalize this programme by looking at the 45 different lattice polygons with two interior points up to SL(2,$mathbb{Z}$) equivalence. Each corr
This survey article, in honor of G. Tians 60th birthday, is inspired by R. Pandharipandes 2002 note highlighting research directions central to Gromov-Witten theory in algebraic geometry and by G. Tians complex-geometric perspective on pseudoholomorp
We construct explicit BPS and non-BPS solutions of the Yang-Mills equations on noncommutative spaces R^{2n}_theta x G/H which are manifestly G-symmetric. Given a G-representation, by twisting with a particular bundle over G/H, we obtain a G-equivaria
The 2d gauged linear sigma model (GLSM) gives a UV model for quantum cohomology on a Kahler manifold X, which is reproduced in the IR limit. We propose and explore a 3d lift of this correspondence, where the UV model is the N=2 supersymmetric 3d gaug
We discuss in detail the problem of counting BPS gauge invariant operators in the chiral ring of quiver gauge theories living on D-branes probing generic toric CY singularities. The computation of generating functions that include counting of baryoni