ترغب بنشر مسار تعليمي؟ اضغط هنا

Linear approximability of two-layer neural networks: A comprehensive analysis based on spectral decay

83   0   0.0 ( 0 )
 نشر من قبل Lei Wu
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we present a spectral-based approach to study the linear approximation of two-layer neural networks. We first consider the case of single neuron and show that the linear approximability, quantified by the Kolmogorov width, is controlled by the eigenvalue decay of an associate kernel. Then, we show that similar results also hold for two-layer neural networks. This spectral-based approach allows us to obtain upper bounds, lower bounds, and explicit hard examples in a united manner. In particular, these bounds imply that for networks activated by smooth functions, restricting the norms of inner-layer weights may significantly impair the expressiveness. By contrast, for non-smooth activation functions, such as ReLU, the network expressiveness is independent of the inner-layer weight norms. In addition, we prove that for a family of non-smooth activation functions, including ReLU, approximating any single neuron with random features suffers from the emph{curse of dimensionality}. This provides an explicit separation of expressiveness between neural networks and random feature models.

قيم البحث

اقرأ أيضاً

Recently, several studies have proven the global convergence and generalization abilities of the gradient descent method for two-layer ReLU networks. Most studies especially focused on the regression problems with the squared loss function, except fo r a few, and the importance of the positivity of the neural tangent kernel has been pointed out. On the other hand, the performance of gradient descent on classification problems using the logistic loss function has not been well studied, and further investigation of this problem structure is possible. In this work, we demonstrate that the separability assumption using a neural tangent model is more reasonable than the positivity condition of the neural tangent kernel and provide a refined convergence analysis of the gradient descent for two-layer networks with smooth activations. A remarkable point of our result is that our convergence and generalization bounds have much better dependence on the network width in comparison to related studies. Consequently, our theory provides a generalization guarantee for less over-parameterized two-layer networks, while most studies require much higher over-parameterization.
196 - Jiaming Xu , Hanjing Zhu 2021
There has been a recent surge of interest in understanding the convergence of gradient descent (GD) and stochastic gradient descent (SGD) in overparameterized neural networks. Most previous works assume that the training data is provided a priori in a batch, while less attention has been paid to the important setting where the training data arrives in a stream. In this paper, we study the streaming data setup and show that with overparamterization and random initialization, the prediction error of two-layer neural networks under one-pass SGD converges in expectation. The convergence rate depends on the eigen-decomposition of the integral operator associated with the so-called neural tangent kernel (NTK). A key step of our analysis is to show a random kernel function converges to the NTK with high probability using the VC dimension and McDiarmids inequality.
Compression techniques for deep neural network models are becoming very important for the efficient execution of high-performance deep learning systems on edge-computing devices. The concept of model compression is also important for analyzing the ge neralization error of deep learning, known as the compression-based error bound. However, there is still huge gap between a practically effective compression method and its rigorous background of statistical learning theory. To resolve this issue, we develop a new theoretical framework for model compression and propose a new pruning method called {it spectral pruning} based on this framework. We define the ``degrees of freedom to quantify the intrinsic dimensionality of a model by using the eigenvalue distribution of the covariance matrix across the internal nodes and show that the compression ability is essentially controlled by this quantity. Moreover, we present a sharp generalization error bound of the compressed model and characterize the bias--variance tradeoff induced by the compression procedure. We apply our method to several datasets to justify our theoretical analyses and show the superiority of the the proposed method.
Discrete Fourier transforms provide a significant speedup in the computation of convolutions in deep learning. In this work, we demonstrate that, beyond its advantages for efficient computation, the spectral domain also provides a powerful representa tion in which to model and train convolutional neural networks (CNNs). We employ spectral representations to introduce a number of innovations to CNN design. First, we propose spectral pooling, which performs dimensionality reduction by truncating the representation in the frequency domain. This approach preserves considerably more information per parameter than other pooling strategies and enables flexibility in the choice of pooling output dimensionality. This representation also enables a new form of stochastic regularization by randomized modification of resolution. We show that these methods achieve competitive results on classification and approximation tasks, without using any dropout or max-pooling. Finally, we demonstrate the effectiveness of complex-coefficient spectral parameterization of convolutional filters. While this leaves the underlying model unchanged, it results in a representation that greatly facilitates optimization. We observe on a variety of popular CNN configurations that this leads to significantly faster convergence during training.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا