ترغب بنشر مسار تعليمي؟ اضغط هنا

Sivers asymmetry in inelastic $J/psi$ leptoproduction at the EIC

86   0   0.0 ( 0 )
 نشر من قبل Rajesh Sangem
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the Sivers asymmetry in inelastic $J/psi$ leptoproduction, $ep^uparrow to e+ J/psi+X$, within a transverse momentum dependent scheme, the so-called generalized parton model (GPM). The effects of final-state interactions are properly taken into account by employing the color-gauge invariant GPM (CGI-GPM). For the $J/psi$ formation the non-relativistic QCD (NRQCD) framework is adopted. Predictions for unpolarized cross sections and maximized Sivers asymmetries at EIC energies are given.

قيم البحث

اقرأ أيضاً

The abundant production of lepton pairs via $J/Psi$ creation at COMPASS, $pi ^pm , p^uparrow to J/Psi , X to ell^+ ell^- X$, allows a measurement of the transverse Single Spin Asymmetry generated by the Sivers effect. The crucial issue of the sign ch ange of the Sivers function in lepton pair production, with respect to Semi Inclusive Deep Inelastic Scattering processes, can be solved. Predictions for the expected magnitude of the Single Spin Asymmetry, which turns out to be large, are given.
We study inclusive $J/psi$ photoproduction at NLO at large $P_T$ at HERA and the EIC. Our computation includes NLO QCD leading-$P_T$ corrections, QED contributions via an off-shell photon as well as those from $J/psi$+charm channels. For the latter, we employ the variable-flavour-number scheme. Our results are found to agree with the latest HERA data by H1 and provide, for the first time, a reliable estimate of the EIC reach for such a measurement. Finally, we demonstrate the observability of $J/psi$+charm production and the sensitivy to probe the non-perturbative charm content of the proton at high $x$, also known as intrinsic charm, at the EIC.
We study the inclusive J/psi production at large transverse momenta at lepton-hadron colliders in the limit when the exchange photon is quasi real, also referred to as photoproduction. Our computation includes the leading-P_T leading-v next-to-leadin g alpha_s corrections. In particular, we consider the contribution from J/psi plus another charm quark, by employing for the first time in quarkonium photoproduction the variable-flavour-number scheme. We also include a QED-induced contribution via an off-shell photon which remained ignored in the literature and which we show to be the leading contribution at high P_T within the reach of the EIC. In turn, we use our computation of J/psi+charm to demonstrate its observability at the future EIC and the EIC sensitivity to probe the non-perturbative charm content of the proton at high x.
We estimate transverse single spin asymmetry (TSSA) in electroproduction of $J/psi$ for J-Lab and EIC energies. We present estimates of TSSAs in $J/psi$ production within generalized parton model (GPM) using recent parametrizations of gluon Sivers fu nction (GSF) and compare the results obtained using color singlet model (CSM) with those obtained using color evaporation model (CEM) of quarkonium production.
Understanding various fundamental properties of nucleons and nuclei are among the most important scientific goals at the upcoming Electron-Ion Collider (EIC). With the unprecedented opportunity provided by the next-generation machine, the EIC might p rovide definitive answers to many standing puzzles and open questions in modern nuclear physics. Here we investigate one of the golden measurements proposed at the EIC, which is to obtain the spatial gluon density distribution within a lead ($Pb$) nucleus. The proposed experimental process is the exclusive $J/psi$ vector-meson production off the $Pb$ nucleus - $e+Pbrightarrow e+J/psi+Pb$. The Fourier transformation of the momentum transfer $|t|$ distribution of the coherent diffraction is the transverse gluon spatial distribution. In order to measure it, the experiment has to overcome an overwhelmingly large background arising from the incoherent diffractive production, where the nucleus $Pb$ mostly breaks up into fragments of particles in the far-forward direction close to the hadron-going beam rapidity. In this paper, we systematically study the rejection of incoherent $J/psi$ production by vetoing products from these nuclear breakups - protons, neutrons, and photons, which is based on the BeAGLE event generator and the most up-to-date EIC Far-forward Interaction Region design. The achieved vetoing efficiency, the ratio between the number of vetoed events and total incoherent events, ranges from about 80% - 99% depending on $|t|$, which can resolve at least the first minimum of the coherent diffractive distribution based on the Sar$it{t}$re model. Experimental and accelerator machine challenges as well as potential improvements are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا