ﻻ يوجد ملخص باللغة العربية
Evaluating causal effects in the presence of interference is challenging in network-based studies of hard to reach populations. Like many such populations, people who inject drugs (PWID) are embedded in social networks and often exert influence on others in their network. In our setting, the study design is observational with a non-randomized network-based HIV prevention intervention. The information is available on each participant and their connections that confer possible shared HIV risk behaviors through injection and sexual risk behaviors. We consider two inverse probability weighted (IPW) estimators to quantify the population-level effects of non-randomized interventions on subsequent health outcomes. We demonstrated that these two IPW estimators are consistent, asymptotically normal, and derived a closed form estimator for the asymptotic variance, while allowing for overlapping interference sets (groups of individuals in which the interference is assumed possible). A simulation study was conducted to evaluate the finite-sample performance of the estimators. We analyzed data from the Transmission Reduction Intervention Project, which ascertained a network of PWID and their contacts in Athens, Greece, from 2013 to 2015. We evaluated the effects of community alerts on HIV risk behavior in this observed network, where the links between participants were defined by using substances or having unprotected sex together. In the study, community alerts were distributed to inform people of recent HIV infections among individuals in close proximity in the observed network. The estimates of the risk differences for both IPW estimators demonstrated a protective effect. The results suggest that HIV risk behavior can be mitigated by exposure to a community alert when an increased risk of HIV is detected in the network.
Social context plays an important role in perpetuating or reducing HIV risk behaviors. This study analyzed the network and individual attributes that were associated with the likelihood that people who inject drugs (PWID) will engage in HIV risk beha
Equipment sharing among people who inject drugs (PWID) is a key risk factor in infection by hepatitis C virus (HCV). Both the effectiveness and cost-effectiveness of interventions aimed at reducing HCV transmission in this population (such as opioid
Background: Highly effective direct-acting antiviral (DAA) regimens (90% efficacy) are becoming available for hepatitis C virus (HCV) treatment. This therapeutic revolution leads us to consider possibility of eradicating the virus. However, for this,
Although combination antiretroviral therapy (ART) is highly effective in suppressing viral load for people with HIV (PWH), many ART agents may exacerbate central nervous system (CNS)-related adverse effects including depression. Therefore, understand
Estimation of causal effects is fundamental in situations were the underlying system will be subject to active interventions. Part of building a causal inference engine is defining how variables relate to each other, that is, defining the functional