ﻻ يوجد ملخص باللغة العربية
We have searched quasi-periodic oscillations (QPOs) for BL Lac PKS J2134-0153 in the 15 GHz radio light curve announced by the Owens Valley Radio Observatory 40-m telescope during the period from 2008-01-05 to 2019-05-18, utilizing the Lomb-Scargle periodogram (LSP) and the weighted wavelet Z-transform (WWZ) techniques. This is the first time that to search for periodic radio signal in BL Lac PKS J2134-0153 by these two methods. These two methods consistently reveal a QPO of 4.69 $pm$ 0.14 years (>5 $sigma$ confidence level). We discuss possible causes for this QPO, and we expected that the binary black holes scenario, where the QPO is caused by the precession of the binary black holes, is the most likely explanation. BL Lac PKS J2134-0153 thus could be a good binary black hole candidate. In the binary black holes scenario, the distance between the primary black hole and the secondary black hole is 1.83$times$10$^{16}$ cm.
Detection of periodicity in the broad-band non-thermal emission of blazars has so far been proven to be elusive. However, there are a number of scenarios which could lead to quasi-periodic variations in blazar light curves. For example, orbital or th
Quasi-periodic oscillation (QPO) detected in the X-ray radiation of black hole X-ray binaries (BHXBs) is thought to originate from dynamical processes in the close vicinity of the black holes (BHs), and thus carries important physical information the
We withdraw our claim that a component in an XMM-Newton satellite light curve of the BL Lacertae object S5 0716 + 714 shows quasi-periodic oscillations (QPOs) of $sim$30 minutes. Although both our original periodogram and wavelet analyses gave consis
We report the detection of a probable $gamma$-ray quasi-periodic oscillation (QPO) of around 314 days in the monthly binned 0.1 -- 300 GeV $gamma$-ray {it Fermi}-LAT light curve of the well known BL Lac blazar OJ 287. To identify and quantify the QPO
PKS 1424+240 is a BL-Lac blazar with unknown redshift detected at high-energy gamma rays by Fermi-LAT with a hard spectrum. It was first detected at very-high-energy by VERITAS and latter confirmed by MAGIC. Attempts to find limits on its redshift in