ﻻ يوجد ملخص باللغة العربية
The second-order nonlinear optical susceptibility $Pi^{(2)}$ for second harmonic generation is calculated for gapped graphene. The linear and second-order nonlinear plasmon excitations are investigated in context of second harmonic generation (SHG). We report a red shift and an order of magnitude enhancement of the SHG resonance with growing gap, or alternatively, reduced electro-chemical potential.
Microscopic nonlinear quantum theory of interaction of coherent electromagnetic radiation with gapped bilayer graphene is developed. The Liouville-von Neumann equation for the density matrix is solved numerically at the multiphoton excitation regime.
The valley degeneracy of electron states in graphene stimulates intensive research of valley-related optical and transport phenomena. While many proposals on how to manipulate valley states have been put forward, experimental access to the valley pol
An optical Second-Harmonic Generation (SHG) allows to probe various structural and symmetry-related properties of materials, since it is sensitive to the inversion symmetry breaking in the system. Here, we investigate the SHG response from a single l
For centrosymmetric materials such as monolayer graphene, no optical second harmonic generation (SHG) is generally expected because it is forbidden under the electric-dipole approximation. Yet we observed a strong, doping induced SHG from graphene, w
Valley polarization in graphene breaks inversion symmetry and therefore leads to second-harmonic generation. We present a complete theory of this effect within a single-particle approximation. It is shown that this may be a sensitive tool to measure