ترغب بنشر مسار تعليمي؟ اضغط هنا

Ammonium adsorption, desorption and recovery by acid and alkaline treated zeolite

39   0   0.0 ( 0 )
 نشر من قبل Sofia Maria Muscarella
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this study, the suitability of zeolite as a possible medium for ammonium adsorption, desorption and recovery from wastewater was investigated. Specifically, batch adsorption and desorption studies with solutions enriched in NH$_4^+$ were conducted employing zeolite to evaluate how the chemical treatment and contact time affect adsorption and desorption. Several experimental tests were carried out considering both untreated and treated zeolite. Untreated and HCl-Na treated zeolite adsorbed up to 11.8 mg NH$_4^+$ g$^{-1}$ and showed the highest efficiency in recovering NH$_4^+$ from aqueous solution. Regardless of pre-treatment, treatments with NaCl resulted in higher and faster adsorption of NH$_4^+$ than treatments with CaCl$_2$ and MgCl$_2$.

قيم البحث

اقرأ أيضاً

The mechanisms controlling the growth rate and composition of epitaxial CdTe and CdZnTe films were studied. The films were grown by isothermal closed space configuration technique. A GaAs 100 substrate was exposed sequentially to the elemental source s, Zn, Te, and Cd, in isothermal conditions. While growth of ZnTe followed an atomic layer epitaxy, ALE, regime self regulated at one monolayer per cycle; the CdTe films revealed different growth rates in dependence of the growth parameters,exposure and purge times. Combination of short purge times and larger Cd exposure times led to not self regulated growth regime for CdTe. This is ascribed to large Cd coverages that were dependent on Cd exposure times, following a Brunauer-Emmett and Teller-type adsorption. However, for longer purge times and or short Cd exposure times, an ALE self regulated regime was achieved with 2 ML per cycle. In this sense, the self-regulation of the growth is limited by desorption, instead of absorption, as in the traditional growth technique. Cd atoms substitution by Zn atoms and subsequent evaporation of surface Cd atoms during Zn exposure has been proved. The influence of these facts on the growth and composition of the alloy is discussed.
170 - Yuya Murata , Arrigo Calzolari , 2019
In order to realize applications of hydrogen-adsorbed graphene, a main issue is how to control hydrogen adsorption/desorption at room temperature. In this study, we demonstrate the possibility to tune hydrogen adsorption on graphene by applying a gat e voltage. The influence of the gate voltage on graphene and its hydrogen adsorption properties was investigated by electrical transport measurements, scanning tunneling microscopy, and density functional theory calculations. We show that more hydrogen adsorbs on graphene with negative gate voltage (p-type doping), compared to that without gate voltage or positive gate voltage (n-type doping). Theoretical calculations explain the gate voltage dependence of hydrogen adsorption as modifications of the adsorption energy and diffusion barrier of hydrogen on graphene by charge doping.
The adsorption characteristics of alkali, alkaline earth and transition metal adatoms on silicene, a graphene-like monolayer structure of silicon, are analyzed by means of first-principles calculations. In contrast to graphene, interaction between th e metal atoms and the silicene surface is quite strong due to its highly reactive buckled hexagonal structure. In addition to structural properties, we also calculate the electronic band dispersion, net magnetic moment, charge transfer, workfunction and dipole moment of the metal adsorbed silicene sheets. Alkali metals, Li, Na and K, adsorb to hollow site without any lattice distortion. As a consequence of the significant charge transfer from alkalis to silicene metalization of silicene takes place. Trends directly related to atomic size, adsorption height, workfunction and dipole moment of the silicene/alkali adatom system are also revealed. We found that the adsorption of alkaline earth metals on silicene are entirely different from their adsorption on graphene. The adsorption of Be, Mg and Ca turns silicene into a narrow gap semiconductor. Adsorption characteristics of eight transition metals Ti, V, Cr, Mn, Fe, Co, Mo and W are also investigated. As a result of their partially occupied d orbital, transition metals show diverse structural, electronic and magnetic properties. Upon the adsorption of transition metals, depending on the adatom type and atomic radius, the system can exhibit metal, half-metal and semiconducting behavior. For all metal adsorbates the direction of the charge transfer is from adsorbate to silicene, because of its high surface reactivity. Our results indicate that the reactive crystal structure of silicene provides a rich playground for functionalization at nanoscale.
Ionic thermoelectrics show great potential in low-grade heat harvesting and thermal sensing owing to their ultrahigh thermopower, low cost and ease in production. However, the lack of effective n-type ionic thermoelectric materials seriously hinders their applications. Here, we report giant and bidirectionally tunable thermopowers within an ultrawide range from -23 to +32 mV K-1 at 90% RH in solid ionic-liquid-based ionogels, rendering it among the best n- and p-type ionic thermoelectric materials. A novel thermopower regulation strategy through ion doping to selectively induce ion aggregates via strong ion-ion interactions is proposed. These charged aggregates are found decisive in modulating the sign and enlarging the magnitude of the thermopower in the ionogels. A prototype wearable device integrated with 12 p-n pairs is demonstrated with a total thermopower of 0.358 V K-1 in general indoor conditions, showing promise for ultrasensitive body heat detection.
Specific strength (strength/density) is a crucial factor while designing high load bearing architecture in areas of aerospace and defence. Strength of the material can be enhanced by blending with high strength component or, by compositing with high strength fillers but both the options has limitations such as at certain load, materials fail due to poor filler and matrix interactions. Therefore, researchers are interested in enhancing strength of materials by playing with topology/geometry and therefore nature is best option to mimic for structures whereas, complexity limits nature mimicked structures. In this paper, we have explored Zeolite-inspired structures for load bearing capacity. Zeolite-inspired structure were obtained from molecular dynamics simulation and then fabricated via Fused deposition Modeling. The atomic scale complex topology from simulation is experimentally synthesized using 3D printing. Compressibility of as-fabricated structures was tested in different direction and compared with simulation results. Such complex architecture can be used for ultralight aerospace and automotive parts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا