ترغب بنشر مسار تعليمي؟ اضغط هنا

Black hole singularities across phase transitions

90   0   0.0 ( 0 )
 نشر من قبل Yan Liu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the behavior of black hole singularities across the Hawking-Page phase transitions, uncovering the possible connection between the physics inside and outside the horizon. We focus on the case of spacelike singularities in Einstein-scalar theory which are of the Kasner form. We find that the Kasner exponents are continuous and non-differentiable during the second order phase transitions, while discontinuous in the first order phase transitions. We give some arguments on the universality of this behavior. We also discuss possible observables in the dual field theory which encode the Kasner exponents.

قيم البحث

اقرأ أيضاً

We argue that a convenient way to analyze instabilities of black holes in AdS space is via Bragg-Williams construction of a free energy function. Starting with a pedagogical review of this construction in condensed matter systems and also its impleme ntation to Hawking-Page transition, we study instabilities associated with hairy black holes and also with the $R$-charged black holes. For the hairy black holes, an analysis of thermal quench is presented.
We consider a generic first-order phase transition at finite temperature and investigate to what extent a population of primordial black holes, of variable masses, can affect the rate of bubble nucleation. Using a thin-wall approximation, we construc t the Euclidean configurations that describe transition at finite temperature. After the transition, the remnant black hole mass is dictated dynamically by the equations of motion. The transition exponent is computed and displays an explicit dependence on temperature. We find the configuration with the lowest Euclidean action to be static and $O(3)$ symmetric; therefore, the transition takes place via thermal excitation. The transition exponent exhibits a strong dependence on the seed mass black hole, $M_+$, being almost directly proportional. A new nucleation condition in the presence of black holes is derived and the nucleation temperature is compared to the familiar flat-space result, i.e. $S_3/T$. For an electroweak-like phase transition it is possible to enhance the nucleation rate if $M_+ lesssim 10^{15} M_{rm P}$. Finally, we outline the possible transition scenarios and the consequences for the power spectrum of stochastic gravitational waves produced due to the first-order phase transition.
An insightful viewpoint was proposed by Susskind about AMPS firewall: the region behind the firewall does not exist and the firewall is an extension of the singularity. In this work, we provided a possible picture of this idea by combining Newmans co mplex metric and Dvali-Gomez BEC black holes, which are Bose-Einstein condensates of N gravitons. The inner space behind the horizon is a realized imaginary space encrusted by the real space outside the horizon. In this way, the singularity extents to the horizon to make a firewall for the infalling observer. Some gravitons escape during the fluctuation of the BEC black hole, resulting in a micro-transparent horizon which makes the firewall exposes slightly to an observer outside the horizon. This picture allows limited communications across the horizon.
Primordial black holes (PBHs) produced in the early Universe have attracted wide interest for their ability to constitute dark matter and explain the compact binary coalescence. We propose a new mechanism of PBH production during first-order phase tr ansitions (PTs) and find that PBHs are naturally produced during PTs model-independently. Because of the randomness of the quantum tunneling, there always exists some probability that the vacuum decay is postponed in a whole Hubble volume. Since the vacuum energy density remains constant while radiation is quickly redshifted in the expanding Universe, the postponed vacuum decay then results in overdense regions, which finally collapse into PBHs as indicated by numerical simulations. Utilizing this result one can obtain mutual predictions and constraints between PBHs and GWs from PTs. The predicted mass function of PBHs is nearly monochromatic. We investigate two typical cases and find that 1) PBHs from a PT constitute all dark matter and GWs peak at $1$Hz, 2) PBHs from a PT can explain the coalescence events observed by LIGO-Virgo collaboration, and meanwhile GWs can explain the common-spectrum process detected by NANOGrav collaboration.
The thermodynamics and phase transitions of charged RN-AdS and rotating Kerr-AdS black holes in a generalized Randall-Sundrum braneworld are investigated in the framework of thermodynamic geometry. A detailed analysis of the thermodynamics, stability and phase structures in the canonical and the grand canonical ensembles for these AdS braneworld black holes are described. The thermodynamic curvatures for both these AdS braneworld black holes are computed and studied as a function of the thermodynamic variables. Through this analysis we illustrate an interesting dependence of the phase structures on the braneworld parameter for these black holes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا