ﻻ يوجد ملخص باللغة العربية
We present a quantum fingerprinting protocol relying on two-photon interference which does not require a shared phase reference between the parties preparing optical signals carrying data fingerprints. We show that the scaling of the protocol, in terms of transmittable classical information, is analogous to the recently proposed and demonstrated scheme based on coherent pulses and first-order interference, offering comparable advantage over classical fingerprinting protocols without access to shared prior randomness. We analyze the protocol taking into account non-Poissonian photon statistics of optical signals and a variety of imperfections, such as transmission losses, dark counts, and residual distinguishability. The impact of these effects on the protocol performance is quantified with the help of Chernoff information.
Precise measurement of the angular deviation of an object is a common task in science and technology. Many methods use light for this purpose. Some of these exploit interference effects to achieve technological advantages, such as amplification effec
The ability of phase-change materials to reversibly and rapidly switch between two stable phases has driven their use in a number of applications such as data storage and optical modulators. Incorporating such materials into metasurfaces enables new
Structured photons are nowadays an interesting resource in classical and quantum optics due to the richness of properties they show under propagation, focusing and in their interaction with matter. Vectorial modes of light in particular, a class of m
Quantum networks involve entanglement sharing between multiple users. Ideally, any two users would be able to connect regardless of the type of photon source they employ, provided they fulfill the requirements for two-photon interference. From a theo
We devise an approach to characterizing the intricate interplay between classical and quantum interference of two-photon states in a network, which comprises multiple time-bin modes. By controlling the phases of delocalized single photons, we manipul