ترغب بنشر مسار تعليمي؟ اضغط هنا

Joint Pilot Design and Channel Estimation using Deep Residual Learning for Multi-Cell Massive MIMO under Hardware Impairments

113   0   0.0 ( 0 )
 نشر من قبل Byungju Lim
 تاريخ النشر 2021
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

In multi-cell massive MIMO systems, channel estimation is deteriorated by pilot contamination and the effects of pilot contamination become more severe due to hardware impairments. In this paper, we propose a joint pilot design and channel estimation based on deep residual learning in order to mitigate the effects of pilot contamination under the consideration of hardware impairments. We first investigate a conventional linear minimum mean square error (LMMSE) based channel estimator to suppress the interference caused by pilot contamination. After that, a deep learning based pilot design is proposed to minimize the mean square error (MSE) of LMMSE channel estimation, which is utilized to the joint pilot design and channel estimator for transfer learning approach. For the channel estimator, we use a deep residual learning which extracts the features of interference caused by pilot contamination and eliminates them to estimate the channel information. Simulation results demonstrate that the proposed joint pilot design and channel estimator outperforms the conventional approach in multi-cell massive MIMO scenarios. Furthermore, the joint pilot design and channel estimator using transfer learning enhances the estimation performance by reducing the effects of pilot contamination when the prior knowledge of pilot contamination cannot be exploited.



قيم البحث

اقرأ أيضاً

Estimation in few-bit MIMO systems is challenging, since the received signals are nonlinearly distorted by the low-resolution ADCs. In this paper, we propose a deep learning framework for channel estimation, data detection, and pilot signal design to address the nonlinearity in such systems. The proposed channel estimation and data detection networks are model-driven and have special structures that take advantage of the domain knowledge in the few-bit quantization process. While the first data detection network, namely B-DetNet, is based on a linearized model obtained from the Bussgang decomposition, the channel estimation network and the second data detection network, namely FBM-CENet and FBM-DetNet respectively, rely on the original quantized system model. To develop FBM-CENet and FBM-DetNet, the maximum-likelihood channel estimation and data detection problems are reformulated to overcome the vanishing gradient issue. An important feature of the proposed FBM-CENet structure is that the pilot matrix is integrated into its weight matrices of the channel estimator. Thus, training the proposed FBM-CENet enables a joint optimization of both the channel estimator at the base station and the pilot signal transmitted from the users. Simulation results show significant performance gain in estimation accuracy by the proposed deep learning framework.
Channel estimation and hybrid precoding are considered for multi-user millimeter wave massive multi-input multi-output system. A deep learning compressed sensing (DLCS) channel estimation scheme is proposed. The channel estimation neural network for the DLCS scheme is trained offline using simulated environments to predict the beamspace channel amplitude. Then the channel is reconstructed based on the obtained indices of dominant beamspace channel entries. A deep learning quantized phase (DLQP) hybrid precoder design method is developed after channel estimation. The training hybrid precoding neural network for the DLQP method is obtained offline considering the approximate phase quantization. Then the deployment hybrid precoding neural network (DHPNN) is obtained by replacing the approximate phase quantization with ideal phase quantization and the output of the DHPNN is the analog precoding vector. Finally, the analog precoding matrix is obtained by stacking the analog precoding vectors and the digital precoding matrix is calculated by zero-forcing. Simulation results demonstrate that the DLCS channel estimation scheme outperforms the existing schemes in terms of the normalized mean-squared error and the spectral efficiency, while the DLQP hybrid precoder design method has better spectral efficiency performance than other methods with low phase shifter resolution.
89 - Jisheng Dai , An Liu , 2018
This paper addresses the problem of joint downlink channel estimation and user grouping in massive multiple-input multiple-output (MIMO) systems, where the motivation comes from the fact that the channel estimation performance can be improved if we e xploit additional common sparsity among nearby users. In the literature, a commonly used group sparsity model assumes that users in each group share a uniform sparsity pattern. In practice, however, this oversimplified assumption usually fails to hold, even for physically close users. Outliers deviated from the uniform sparsity pattern in each group may significantly degrade the effectiveness of common sparsity, and hence bring limited (or negative) gain for channel estimation. To better capture the group sparse structure in practice, we provide a general model having two sparsity components: commonly shared sparsity and individual sparsity, where the additional individual sparsity accounts for any outliers. Then, we propose a novel sparse Bayesian learning (SBL)-based framework to address the joint channel estimation and user grouping problem under the general sparsity model. The framework can fully exploit the common sparsity among nearby users and exclude the harmful effect from outliers simultaneously. Simulation results reveal substantial performance gains over the existing state-of-the-art baselines.
In this paper, we investigate the impact of channel aging on the performance of cell-free (CF) massive multiple-input multiple-output (MIMO) systems with pilot contamination. To take into account the channel aging effect due to user mobility, we firs t compute a channel estimate. We use it to derive novel closed-form expressions for the uplink spectral efficiency (SE) of CF massive MIMO systems with large-scale fading decoding and matched-filter receiver cooperation. The performance of a small-cell system is derived for comparison. It is found that CF massive MIMO systems achieve higher 95%-likely uplink SE in both low- and high-mobility conditions, and CF massive MIMO is more robust to channel aging. Fractional power control (FPC) is considered to compensate to limit the inter-user interference. The results show that, compared with full power transmission, the benefits of FPC are gradually weakened as the channel aging grows stronger.
This paper proposes a deep learning-based channel estimation method for multi-cell interference-limited massive MIMO systems, in which base stations equipped with a large number of antennas serve multiple single-antenna users. The proposed estimator employs a specially designed deep neural network (DNN) to first denoise the received signal, followed by a conventional least-squares (LS) estimation. We analytically prove that our LS-type deep channel estimator can approach minimum mean square error (MMSE) estimator performance for high-dimensional signals, while avoiding MMSEs requirement for complex channel
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا