ترغب بنشر مسار تعليمي؟ اضغط هنا

Noisy Channel Language Model Prompting for Few-Shot Text Classification

143   0   0.0 ( 0 )
 نشر من قبل Sewon Min
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a noisy channel approach for language model prompting in few-shot text classification. Instead of computing the likelihood of the label given the input (referred as direct models), channel models compute the conditional probability of the input given the label, and are thereby required to explain every word in the input. We use channel models for recently proposed few-shot learning methods with no or very limited updates to the language model parameters, via either in-context demonstration or prompt tuning. Our experiments show that, for both methods, channel models significantly outperform their direct counterparts, which we attribute to their stability, i.e., lower variance and higher worst-case accuracy. We also present extensive ablations that provide recommendations for when to use channel prompt tuning instead of other competitive models (e.g., direct head tuning): channel prompt tuning is preferred when the number of training examples is small, labels in the training data are imbalanced, or generalization to unseen labels is required.

قيم البحث

اقرأ أيضاً

Some NLP tasks can be solved in a fully unsupervised fashion by providing a pretrained language model with task descriptions in natural language (e.g., Radford et al., 2019). While this approach underperforms its supervised counterpart, we show in th is work that the two ideas can be combined: We introduce Pattern-Exploiting Training (PET), a semi-supervised training procedure that reformulates input examples as cloze-style phrases to help language models understand a given task. These phrases are then used to assign soft labels to a large set of unlabeled examples. Finally, standard supervised training is performed on the resulting training set. For several tasks and languages, PET outperforms supervised training and strong semi-supervised approaches in low-resource settings by a large margin.
Text classification tends to struggle when data is deficient or when it needs to adapt to unseen classes. In such challenging scenarios, recent studies have used meta-learning to simulate the few-shot task, in which new queries are compared to a smal l support set at the sample-wise level. However, this sample-wise comparison may be severely disturbed by the various expressions in the same class. Therefore, we should be able to learn a general representation of each class in the support set and then compare it to new queries. In this paper, we propose a novel Induction Network to learn such a generalized class-wise representation, by innovatively leveraging the dynamic routing algorithm in meta-learning. In this way, we find the model is able to induce and generalize better. We evaluate the proposed model on a well-studied sentiment classification dataset (English) and a real-world dialogue intent classification dataset (Chinese). Experiment results show that on both datasets, the proposed model significantly outperforms the existing state-of-the-art approaches, proving the effectiveness of class-wise generalization in few-shot text classification.
Meta-learning has emerged as a trending technique to tackle few-shot text classification and achieved state-of-the-art performance. However, existing solutions heavily rely on the exploitation of lexical features and their distributional signatures o n training data, while neglecting to strengthen the models ability to adapt to new tasks. In this paper, we propose a novel meta-learning framework integrated with an adversarial domain adaptation network, aiming to improve the adaptive ability of the model and generate high-quality text embedding for new classes. Extensive experiments are conducted on four benchmark datasets and our method demonstrates clear superiority over the state-of-the-art models in all the datasets. In particular, the accuracy of 1-shot and 5-shot classification on the dataset of 20 Newsgroups is boosted from 52.1% to 59.6%, and from 68.3% to 77.8%, respectively.
A recent approach for few-shot text classification is to convert textual inputs to cloze questions that contain some form of task description, process them with a pretrained language model and map the predicted words to labels. Manually defining this mapping between words and labels requires both domain expertise and an understanding of the language models abilities. To mitigate this issue, we devise an approach that automatically finds such a mapping given small amounts of training data. For a number of tasks, the mapping found by our approach performs almost as well as hand-crafted label-to-word mappings.
This paper proposes Dynamic Memory Induction Networks (DMIN) for few-shot text classification. The model utilizes dynamic routing to provide more flexibility to memory-based few-shot learning in order to better adapt the support sets, which is a crit ical capacity of few-shot classification models. Based on that, we further develop induction models with query information, aiming to enhance the generalization ability of meta-learning. The proposed model achieves new state-of-the-art results on the miniRCV1 and ODIC dataset, improving the best performance (accuracy) by 2~4%. Detailed analysis is further performed to show the effectiveness of each component.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا