ﻻ يوجد ملخص باللغة العربية
In this work, we investigate the consequences of the Renormalization Group Equation (RGE) in the determination of the effective potential and the study of Dynamical Symmetry Breaking (DSB) in an Gross-Neveu (GN) model with N fermions fields in (1+1) dimensional space-time, which can be applied as a model to describe certain properties of the polyacetylene. The classical Lagrangian of the model is scale invariant, but radiative corrections to the effective potential can lead to dimensional transmutation, when a dimensionless parameter (coupling constant) of the classical Lagrangian is exchanged for a dimensionful one, a dynamically generated mass for the fermion fields. We have studied the behavior of the unimproved and improved effective potential and observed that the improvement of the effective potential shown an interesting performance in comparison with the unimproved case in the configuration of the minimum of potential. Therefore, we have calculated the improved effective potential up to six loops order using the leading logs approximation.
We renormalize the SU(N) Gross-Neveu model in the modified minimal subtraction (MSbar) scheme at four loops and determine the beta-function at this order. The theory ceases to be multiplicatively renormalizable when dimensionally regularized due to t
The phase diagram of the Gross-Neveu (G-N) model in 2+1 dimensions as a function of chemical potential and temperature has a simple curve separating the broken symmetry and unbroken symmetry phases, with chiral symmetry being restored both at high te
A complete thermodynamical analysis of the 2+1 dimensional massless Gross-Neveu model is performed using the optimized perturbation theory. This is a non-perturbative method that allows us to go beyond the known large-N results already at lowest orde
The large N limit of the 3-d Gross-Neveu model is here studied on manifolds with positive and negative constant curvature. Using the $zeta$-function regularization we analyze the critical properties of this model on the spaces $S^2 times S^1$ and $H^
Using analogies between flow equations from the Functional Renormalization Group and flow equations from (numerical) fluid dynamics we investigate the effects of bosonic fluctuations in a bosonized Gross-Neveu model -- namely the Gross-Neveu-Yukawa m