ﻻ يوجد ملخص باللغة العربية
A complete thermodynamical analysis of the 2+1 dimensional massless Gross-Neveu model is performed using the optimized perturbation theory. This is a non-perturbative method that allows us to go beyond the known large-N results already at lowest order. Our results, for a finite number of fermion species, N, show the existence of a tricritical point in the temperature and chemical potential phase diagram for discrete chiral phase transition allowing us to precisely to locate it. By studying the phase diagram in the pressure and inverse density plane, we also show the existence of a liquid-gas phase, which, so far, was unknown to exist in this model. Finally, we also derive N dependent analytical expressions for the fermionic mass, critical temperature and critical chemical potential.
The method of optimized perturbation theory (OPT) is used to study the phase diagram of the massless Gross-Neveu model in 2+1 dimensions. In the temperature and chemical potential plane, our results give strong support to the existence of a tricritic
The phase diagram of the Gross-Neveu (G-N) model in 2+1 dimensions as a function of chemical potential and temperature has a simple curve separating the broken symmetry and unbroken symmetry phases, with chiral symmetry being restored both at high te
We consider the 3-dimensional massive Gross-Neveu model at finite temperature as an effective theory for strong interactions. Using the Matsubara imaginary time formalism, we derive a closed form for the renormalized $T$-dependent four-point function
In this work, we investigate the consequences of the Renormalization Group Equation (RGE) in the determination of the effective potential and the study of Dynamical Symmetry Breaking (DSB) in an Gross-Neveu (GN) model with N fermions fields in (1+1)
By considering the fifth order term of the interaction potential in massive gravity theory, we study the $P-V$ critical behaviors of AdS black hole in $d geq 7$ dimensional space-time, and find the tricritical point and the solid/liquid/gas phase tra