ﻻ يوجد ملخص باللغة العربية
In this paper, we show how to adapt and deploy anomaly detection algorithms based on deep autoencoders, for the unsupervised detection of new physics signatures in the extremely challenging environment of a real-time event selection system at the Large Hadron Collider (LHC). We demonstrate that new physics signatures can be enhanced by three orders of magnitude, while staying within the strict latency and resource constraints of a typical LHC event filtering system. This would allow for collecting datasets potentially enriched with high-purity contributions from new physics processes. Through per-layer, highly parallel implementations of network layers, support for autoencoder-specific losses on FPGAs and latent space based inference, we demonstrate that anomaly detection can be performed in as little as $80,$ns using less than 3% of the logic resources in the Xilinx Virtex VU9P FPGA. Opening the way to real-life applications of this idea during the next data-taking campaign of the LHC.
Finding tracks downstream of the magnet at the earliest LHCb trigger level is not part of the baseline plan of the upgrade trigger, on account of the significant CPU time required to execute the search. Many long-lived particles, such as $K^0_S$ and
The Large Hadron Collider presents an unprecedented opportunity to probe the realm of new physics in the TeV region and shed light on some of the core unresolved issues of particle physics. These include the nature of electroweak symmetry breaking, t
We investigate new physics scenarios where systems comprised of a single top quark accompanied by missing transverse energy, dubbed monotops, can be produced at the LHC. Following a simplified model approach, we describe all possible monotop producti
On-detector digital electronics in High-Energy Physics experiments is increasingly being implemented by means of SRAM-based FPGA, due to their capabilities of reconfiguration, real-time processing and multi-gigabit data transfer. Radiation-induced si
We present a new calculation of the energy distribution of high-energy neutrinos from the decay of charm and bottom hadrons produced at the Large Hadron Collider (LHC). In the kinematical region of very forward rapidities, heavy-flavor production and