ترغب بنشر مسار تعليمي؟ اضغط هنا

The Hunt for New Physics at the Large Hadron Collider

211   0   0.0 ( 0 )
 نشر من قبل Brent D. Nelson
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The Large Hadron Collider presents an unprecedented opportunity to probe the realm of new physics in the TeV region and shed light on some of the core unresolved issues of particle physics. These include the nature of electroweak symmetry breaking, the origin of mass, the possible constituent of cold dark matter, new sources of CP violation needed to explain the baryon excess in the universe, the possible existence of extra gauge groups and extra matter, and importantly the path Nature chooses to resolve the hierarchy problem - is it supersymmetry or extra dimensions. Many models of new physics beyond the standard model contain a hidden sector which can be probed at the LHC. Additionally, the LHC will be a top factory and accurate measurements of the properties of the top and its rare decays will provide a window to new physics. Further, the LHC could shed light on the origin of neutralino masses if the new physics associated with their generation lies in the TeV region. Finally, the LHC is also a laboratory to test the hypothesis of TeV scale strings and D-brane models. An overview of these possibilities is presented in the spirit that it will serve as a companion to the Technical Design Reports (TDRs) by the particle detector groups ATLAS and CMS to facilitate the test of the new theoretical ideas at the LHC. Which of these ideas stands the test of the LHC data will govern the course of particle physics in the subsequent decades.



قيم البحث

اقرأ أيضاً

The sensitivities to anomalous quartic photon couplings at the Large Hadron Collider are estimated using diphoton production via photon fusion. The tagging of the protons proves to be a very powerful tool to suppress the background and unprecedented sensitivities down to $6 cdot 10^{-15}$gev$^{-4}$ are obtained, providing a new window on extra dimensions and strongly-interacting composite states in the multi-TeV range. Generic contributions to quartic photon couplings from charged and neutral particles with arbitrary spin are also presented.
Between the years 2015 and 2019, members of the Horizon 2020-funded Innovative Training Network named AMVA4NewPhysics studied the customization and application of advanced multivariate analysis methods and statistical learning tools to high-energy ph ysics problems, as well as developed entirely new ones. Many of those methods were successfully used to improve the sensitivity of data analyses performed by the ATLAS and CMS experiments at the CERN Large Hadron Collider; several others, still in the testing phase, promise to further improve the precision of measurements of fundamental physics parameters and the reach of searches for new phenomena. In this paper, the most relevant new tools, among those studied and developed, are presented along with the evaluation of their performances.
321 - Joshua Sayre 2011
We investigate the prospects for the discovery of massive color-octet vector bosons at the CERN Large Hadron Collider with $sqrt{s} = 14$ TeV. A phenomenological Lagrangian is adopted to evaluate the cross section of a pair of colored vector bosons ( colorons, $tilde{rho}$) decaying into four colored scalar resonances (hyper-pions, $tilde{pi}$), which then decay into eight gluons. We include the dominant physics background from the production of $8g,7g1q, 6g2q$, and $5g3q$, and determine the masses of $tilde{pi}$ and $tilde{rho}$ where discovery is possible. For example, we find that a 5$sigma$ signal can be established for $M_{tilde{pi}} alt 495$ GeV ($M_{tilde{rho}} alt 1650$ GeV). More generally we give the reach of this process for a selection of possible cuts and integrated luminosities.
We investigate new physics scenarios where systems comprised of a single top quark accompanied by missing transverse energy, dubbed monotops, can be produced at the LHC. Following a simplified model approach, we describe all possible monotop producti on modes via an effective theory and estimate the sensitivity of the LHC, assuming 20 fb$^{-1}$ of collisions at a center-of-mass energy of 8 TeV, to the observation of a monotop state. Considering both leptonic and hadronic top quark decays, we show that large fractions of the parameter space are reachable and that new physics particles with masses ranging up to 1.5 TeV can leave hints within the 2012 LHC dataset, assuming moderate new physics coupling strengths.
We present a new calculation of the energy distribution of high-energy neutrinos from the decay of charm and bottom hadrons produced at the Large Hadron Collider (LHC). In the kinematical region of very forward rapidities, heavy-flavor production and decay is a source of tau neutrinos that leads to thousands of { charged-current} tau neutrino events in a 1 m long, 1 m radius lead neutrino detector at a distance of 480 m from the interaction region. In our computation, next-to-leading order QCD radiative corrections are accounted for in the production cross-sections. Non-perturbative intrinsic-$k_T$ effects are approximated by a simple phenomenological model introducing a Gaussian $k_T$-smearing of the parton distribution functions, which might also mimic perturbative effects due to multiple initial-state soft-gluon emissions. The transition from partonic to hadronic states is described by phenomenological fragmentation functions. To study the effect of various input parameters, theoretical predictions for $D_s^pm$ production are compared with LHCb data on double-differential cross-sections in transverse momentum and rapidity. The uncertainties related to the choice of the input parameter values, ultimately affecting the predictions of the tau neutrino event distributions, are discussed. We consider a 3+1 neutrino mixing scenario to illustrate the potential for a neutrino experiment to constrain the 3+1 parameter space using tau neutrinos and antineutrinos. We find large theoretical uncertainties in the predictions of the neutrino fluxes in the far-forward region. Untangling the effects of tau neutrino oscillations into sterile neutrinos and distinguishing a 3+1 scenario from the standard scenario with three active neutrino flavours, will be challenging due to the large theoretical uncertainties from QCD.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا