ترغب بنشر مسار تعليمي؟ اضغط هنا

Design of adaptive optics by interference fitting: theoretical background

104   0   0.0 ( 0 )
 نشر من قبل Luca Esposito
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Interference-fit joints are typically adopted to produce permanent assemblies among mechanical parts. The resulting contact pressure is generally used for element fixing or to allow load transmission. Nevertheless, some special designs take advantage of the contact pressure to induce desiderata deformation or to mitigate the stress field inside the structure. Biased interference fitting between a planar mirror and an external ring could be used to induce the required curvature to realize new adaptive lens for optical aberration correction. Recently, thermally-actuated deformable mirror on this principle based, was proposed and prototyped. Although the feasibility and utility of such innovative lens was demonstrated, no comprehensive theory was developed to describe mirror behaviour and predict their curvature. Nowadays, the use of approximated numerical approach, such as the finite element method, is the only way to study the interaction between biased and interference fitted bodies. The paper aims to give the theoretical background for the correct design of adaptive lens actuated by interference fitting. A new formulation for the curvature prediction is proposed and compared with finite element analysis and available experimental measurements.



قيم البحث

اقرأ أيضاً

We introduce a constructive algorithm for universal linear electromagnetic transformations between the $N$ input and $N$ output modes of a dielectric slab. The approach uses out-of-plane phase modulation programmed down to $N^2$ degrees of freedom. T he total area of these modulators equals that of the entire slab: our scheme satisfies the minimum area constraint for programmable linear optical transformations. We also present error correction schemes that enable high-fidelity unitary transformations at large $N$. This ``programmable multimode interferometer (ProMMI) thus translates the algorithmic simplicity of Mach-Zehnder meshes into a holographically programmed slab, yielding DoF-limited compactness and error tolerance while eliminating the dominant sidewall-related optical losses and directional-coupler-related patterning challenges.
The CHARA Array is the longest baseline optical interferometer in the world. Operated with natural seeing, it has delivered landmark sub-milliarcsecond results in the areas of stellar imaging, binaries, and stellar diameters. However, to achieve ambi tious observations of faint targets such as young stellar objects and active galactic nuclei, higher sensitivity is required. For that purpose, adaptive optics are developed to correct atmospheric turbulence and non-common path aberrations between each telescope and the beam combiner lab. This paper describes the AO software and its integration into the CHARA system. We also report initial on-sky tests that demonstrate an increase of scientific throughput by sensitivity gain and by extending useful observing time in worse seeing conditions. Our 6 telescopes and 12 AO systems with tens of critical alignments and control loops pose challenges in operation. We describe our methods enabling a single scientist to operate the entire system.
For active optical imaging, the use of single-photon detectors can greatly improve the detection sensitivity of the system. However, the traditional maximum-likelihood based imaging method needs a long acquisition time to capture clear three-dimensio nal (3D) image in low light-level. To tackle this problem, we present a novel imaging method for depth estimate, which can obtain the accurate 3D image in a short acquisition time. Our method combines the photon-count statistics with the temporal correlations of the reflected signal. According to the characteristics of the target surface, including the surface reflectivity, our method is capable of adaptively changing the dwell time in each pixel. The experimental results demonstrate that the proposed method can fast obtain the accurate depth image despite the existence of strong background noise.
LiteBIRD is a proposed JAXA satellite mission to measure the CMB B-mode polarization with unprecedented sensitivity ($sigma_rsim 0.001$). To achieve this goal, $4676$ state-of-the-art TES bolometers will observe the whole sky for 3 years from L2. The se detectors, as well as the SQUID readout, are extremely susceptible to EMI and other instrumental disturbances e.g. static magnetic field and vibration. As a result, careful analysis of the interference between the detector system and the rest of the telescope instruments is essential. This study is particularly important during the early phase of the project, in order to address potential problems before the final assembly of the whole instrument. We report our plan for the preparation of a cryogenic testbed to study the interaction between the detectors and other subsystems, especially a polarization modulator unit consisting of a magnetically-rotating half wave plate. We also present the requirements, current status and preliminary results.
Multi-object adaptive optics (MOAO) has been demonstrated by the CANARY instrument on the William Herschel Telescope. However, for proposed MOAO systems on the next generation Extremely Large Telescopes, such as EAGLE, many challenges remain. Here we investigate requirements that MOAO operation places on deformable mirrors (DMs) using a full end-to-end Monte-Carlo AO simulation code. By taking into consideration a prior global ground-layer (GL) correction, we show that actuator density for the MOAO DMs can be reduced with little performance loss. We note that this reduction is only possible with the addition of a GL DM, whose order is greater than or equal to that of the original MOAO mirrors. The addition of a GL DM of lesser order does not affect system performance (if tip/tilt star sharpening is ignored). We also quantify the maximum mechanical DM stroke requirements (3.5 $mu$m desired) and provide tolerances for the DM alignment accuracy, both lateral (to within an eighth of a sub-aperture) and rotational (to within 0.2$^circ$). By presenting results over a range of laser guide star asterism diameters, we ensure that these results are equally applicable for laser tomographic AO systems. We provide the opportunity for significant cost savings to be made in the implementation of MOAO systems, resulting from the lower requirement for DM actuator density.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا