ترغب بنشر مسار تعليمي؟ اضغط هنا

CHARA Array adaptive optics: complex operational software and performance

78   0   0.0 ( 0 )
 نشر من قبل Narsireddy Anugu Dr
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The CHARA Array is the longest baseline optical interferometer in the world. Operated with natural seeing, it has delivered landmark sub-milliarcsecond results in the areas of stellar imaging, binaries, and stellar diameters. However, to achieve ambitious observations of faint targets such as young stellar objects and active galactic nuclei, higher sensitivity is required. For that purpose, adaptive optics are developed to correct atmospheric turbulence and non-common path aberrations between each telescope and the beam combiner lab. This paper describes the AO software and its integration into the CHARA system. We also report initial on-sky tests that demonstrate an increase of scientific throughput by sensitivity gain and by extending useful observing time in worse seeing conditions. Our 6 telescopes and 12 AO systems with tens of critical alignments and control loops pose challenges in operation. We describe our methods enabling a single scientist to operate the entire system.



قيم البحث

اقرأ أيضاً

Recent advances in adaptive optics (AO) have led to the implementation of wide field-of-view AO systems. A number of wide-field AO systems are also planned for the forthcoming Extremely Large Telescopes. Such systems have multiple wavefront sensors o f different types, and usually multiple deformable mirrors (DMs). Here, we report on our experience integrating cameras and DMs with the real-time control systems of two wide-field AO systems. These are CANARY, which has been operating on-sky since 2010, and DRAGON, which is a laboratory adaptive optics real-time demonstrator instrument. We detail the issues and difficulties that arose, along with the solutions we developed. We also provide recommendations for consideration when developing future wide-field AO systems.
Multi-object adaptive optics (MOAO) has been demonstrated by the CANARY instrument on the William Herschel Telescope. However, for proposed MOAO systems on the next generation Extremely Large Telescopes, such as EAGLE, many challenges remain. Here we investigate requirements that MOAO operation places on deformable mirrors (DMs) using a full end-to-end Monte-Carlo AO simulation code. By taking into consideration a prior global ground-layer (GL) correction, we show that actuator density for the MOAO DMs can be reduced with little performance loss. We note that this reduction is only possible with the addition of a GL DM, whose order is greater than or equal to that of the original MOAO mirrors. The addition of a GL DM of lesser order does not affect system performance (if tip/tilt star sharpening is ignored). We also quantify the maximum mechanical DM stroke requirements (3.5 $mu$m desired) and provide tolerances for the DM alignment accuracy, both lateral (to within an eighth of a sub-aperture) and rotational (to within 0.2$^circ$). By presenting results over a range of laser guide star asterism diameters, we ensure that these results are equally applicable for laser tomographic AO systems. We provide the opportunity for significant cost savings to be made in the implementation of MOAO systems, resulting from the lower requirement for DM actuator density.
Ultra-high energy neutrinos are detectable through impulsive radio signals generated through interactions in dense media, such as ice. Subsurface in-ice radio arrays are a promising way to advance the observation and measurement of astrophysical high -energy neutrinos with energies above those discovered by the IceCube detector ($geq$1 PeV) as well as cosmogenic neutrinos created in the GZK process ($geq$100 PeV). Here we describe the $textit{NuPhase}$ detector, which is a compact receiving array of low-gain antennas deployed 185 m deep in glacial ice near the South Pole. Signals from the antennas are digitized and coherently summed into multiple beams to form a low-threshold interferometric phased array trigger for radio impulses. The NuPhase detector was installed at an Askaryan Radio Array (ARA) station during the 2017/18 Austral summer season. $textit{In situ}$ measurements with an impulsive, point-source calibration instrument show a 50% trigger efficiency on impulses with voltage signal-to-noise ratios (SNR) of $le$2.0, a factor of $sim$1.8 improvement in SNR over the standard ARA combinatoric trigger. Hardware-level simulations, validated with $textit{in situ}$ measurements, predict a trigger threshold of an SNR as low as 1.6 for neutrino interactions that are in the far field of the array. With the already-achieved NuPhase trigger performance included in ARASim, a detector simulation for the ARA experiment, we find the trigger-level effective detector volume is increased by a factor of 1.8 at neutrino energies between 10 and 100 PeV compared to the currently used ARA combinatoric trigger. We also discuss an achievable near term path toward lowering the trigger threshold further to an SNR of 1.0, which would increase the effective single-station volume by more than a factor of 3 in the same range of neutrino energies.
Uniform large transition-edge sensor (TES) arrays are fundamental for the next generation of X-ray space observatories. These arrays are required to achieve an energy resolution $Delta E$ < 3 eV full-width-half-maximum (FWHM) in the soft X-ray energy range. We are currently developing X-ray microcalorimeter arrays for use in future laboratory and space-based X-ray astrophysics experiments and ground-based spectrometers. In this contribution we report on the development and the characterization of a uniform 32$times$32 pixel array with 140$times$30 $mu$m$^2$ Ti/Au TESs with Au X-ray absorber. We report upon extensive measurements on 60 pixels in order to show the uniformity of our large TES array. The averaged critical temperature is $T_mathrm{c}$ = 89.5$pm$0.5 mK and the variation across the array ($sim$1 cm) is less than 1.5 mK. We found a large region of detectors bias points between 20% and 40% of the normal-state resistance where the energy resolution is constantly lower than 3 eV. In particular, results show a summed X-ray spectral resolution $Delta E_mathrm{FWHM}$ = 2.50$pm$0.04 eV at a photon energy of 5.9 keV, measured in a single-pixel mode using a frequency domain multiplexing (FDM) readout system developed at SRON/VTT at bias frequencies ranging from 1 to 5 MHz. Moreover we compare the logarithmic resistance sensitivity with respect to temperature and current ($alpha$ and $beta$ respectively) and their correlation with the detectors noise parameter $M$, showing an homogeneous behaviour for all the measured pixels in the array.
The Cherenkov Telescope Array (CTA) is a future gamma-ray observatory that is planned to significantly improve upon the sensitivity and precision of the current generation of Cherenkov telescopes. The observatory will consist of several dozens of tel escopes with different sizes and equipped with different types of cameras. Of these, the FlashCam camera system is the first to implement a fully digital signal processing chain which allows for a traceable, configurable trigger scheme and flexible signal reconstruction. As of autumn 2016, a prototype FlashCam camera for the medium-sized telescopes of CTA nears completion. First results of the ongoing system tests demonstrate that the signal chain and the readout system surpass CTA requirements. The stability of the system is shown using long-term temperature cycling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا