ﻻ يوجد ملخص باللغة العربية
We propose supertwistor realisations of $(p,q)$ anti-de Sitter (AdS) superspaces in three dimensions and $cal N$-extended AdS superspaces in four dimensions. For each superspace, we identify a two-point function that is invariant under the corresponding isometry supergroup. This two-point function is a supersymmetric extension (of a function) of the geodesic distance. We also describe a bi-supertwistor formulation for $cal N$-extended AdS superspace in four dimensions.
Supermanifolds provide a very natural ground to understand and handle supersymmetry from a geometric point of view; supersymmetry in $d=3,4,6$ and $10$ dimensions is also deeply related to the normed division algebras. In this paper we want to show
We present a large class of supersymmetric classical r-matrices, describing the supertwist deformations of Poincare and Euclidean superalgebras. We consider in detail new family of four supertwists of N=1 Poincare superalgebra and provide as well the
In this paper we study in detail the deformations introduced in [1] of the integrable structures of the AdS$_{2,3}$ integrable models. We do this by embedding the corresponding scattering matrices into the most general solutions of the Yang-Baxter eq
We introduce N-extended (p,q) AdS superspaces in three space-time dimensions, with p+q=N and p>=q, and analyse their geometry. We show that all (p,q) AdS superspaces with X^{IJKL}=0 are conformally flat. Nonlinear sigma-models with (p,q) AdS supersym
We apply an arbitrary number of dressing transformations to a static minimal surface in AdS(4). Interestingly, a single dressing transformation, with the simplest dressing factor, interrelates the latter to solutions of the Euclidean non linear sigma