ﻻ يوجد ملخص باللغة العربية
Incremental learning of semantic segmentation has emerged as a promising strategy for visual scene interpretation in the open- world setting. However, it remains challenging to acquire novel classes in an online fashion for the segmentation task, mainly due to its continuously-evolving semantic label space, partial pixelwise ground-truth annotations, and constrained data availability. To ad- dress this, we propose an incremental learning strategy that can fast adapt deep segmentation models without catastrophic forgetting, using a streaming input data with pixel annotations on the novel classes only. To this end, we develop a uni ed learning strategy based on the Expectation-Maximization (EM) framework, which integrates an iterative relabeling strategy that lls in the missing labels and a rehearsal-based incremental learning step that balances the stability-plasticity of the model. Moreover, our EM algorithm adopts an adaptive sampling method to select informative train- ing data and a class-balancing training strategy in the incremental model updates, both improving the e cacy of model learning. We validate our approach on the PASCAL VOC 2012 and ADE20K datasets, and the results demonstrate its superior performance over the existing incremental methods.
This paper presents a real-time online vision framework to jointly recover an indoor scenes 3D structure and semantic label. Given noisy depth maps, a camera trajectory, and 2D semantic labels at train time, the proposed neural network learns to fuse
Modern deep learning approaches have achieved great success in many vision applications by training a model using all available task-specific data. However, there are two major obstacles making it challenging to implement for real life applications:
We propose ViewAL, a novel active learning strategy for semantic segmentation that exploits viewpoint consistency in multi-view datasets. Our core idea is that inconsistencies in model predictions across viewpoints provide a very reliable measure of
Many automated processes such as auto-piloting rely on a good semantic segmentation as a critical component. To speed up performance, it is common to downsample the input frame. However, this comes at the cost of missed small objects and reduced accu
Most existing approaches to train a unified multi-organ segmentation model from several single-organ datasets require simultaneously access multiple datasets during training. In the real scenarios, due to privacy and ethics concerns, the training dat