ﻻ يوجد ملخص باللغة العربية
A simple graph $G$ with maximum degree $Delta$ is overfull if $|E(G)|>Delta lfloor |V(G)|/2rfloor$. The core of $G$, denoted $G_{Delta}$, is the subgraph of $G$ induced by its vertices of degree $Delta$. Clearly, the chromatic index of $G$ equals $Delta+1$ if $G$ is overfull. Conversely, Hilton and Zhao in 1996 conjectured that if $G$ is a simple connected graph with $Deltage 3$ and $Delta(G_Delta)le 2$, then $chi(G)=Delta+1$ implies that $G$ is overfull or $G=P^*$, where $P^*$ is obtained from the Petersen graph by deleting a vertex (Core Conjecture). The goal of this paper is to develop the concepts of pseudo-multifan and lollipop and study their properties in an edge colored graph. These concepts and properties are of independent interests, and will be particularly used to prove the Core Conjecture in a subsequent paper.
Let $G$ be a simple graph with maximum degree $Delta$. We call $G$ emph{overfull} if $|E(G)|>Delta lfloor |V(G)|/2rfloor$. The emph{core} of $G$, denoted $G_{Delta}$, is the subgraph of $G$ induced by its vertices of degree $Delta$. A classic result
A simple graph $G$ with maximum degree $Delta$ is overfull if $|E(G)|>Delta lfloor |V(G)|/2rfloor$. The core of $G$, denoted $G_{Delta}$, is the subgraph of $G$ induced by its vertices of degree $Delta$. Clearly, the chromatic index of $G$ equals $De
Babson and Steingr{i}msson introduced generalized permutation patterns and showed that most of the Mahonian statistics in the literature can be expressed by the combination of generalized pattern functions. Particularly, they defined a new Mahonian s
Let $m$, $n$, and $k$ be integers satisfying $0 < k leq n < 2k leq m$. A family of sets $mathcal{F}$ is called an $(m,n,k)$-intersecting family if $binom{[n]}{k} subseteq mathcal{F} subseteq binom{[m]}{k}$ and any pair of members of $mathcal{F}$ have
A conjecture of Graver from 1991 states that the generic $3$-dimensional rigidity matroid is the unique maximal abstract $3$-rigidity matroid with respect to the weak order on matroids. Based on a close similarity between the generic $d$-dimensional