ﻻ يوجد ملخص باللغة العربية
A conjecture of Graver from 1991 states that the generic $3$-dimensional rigidity matroid is the unique maximal abstract $3$-rigidity matroid with respect to the weak order on matroids. Based on a close similarity between the generic $d$-dimensional rigidity matroid and the generic $C_{d-2}^{d-1}$-cofactor matroid from approximation theory, Whiteley made an analogous conjecture in 1996 that the generic $C_{d-2}^{d-1}$-cofactor matroid is the unique maximal abstract $d$-rigidity matroid for all $dgeq 2$. We verify the case $d=3$ of Whiteleys conjecture in this paper. A key step in our proof is to verify a second conjecture of Whiteley that the `double V-replacement operation preserves independence in the generic $C_2^1$-cofactor matroid.
We showed in the first paper of this series that the generic $C_2^1$-cofactor matroid is the unique maximal abstract $3$-rigidity matroid. In this paper we obtain a combinatorial characterization of independence in this matroid. This solves the cofac
A P-graph is a simple graph G which is embeddable in the real projective plane P. A (3,6)-tight P-graph is shown to be constructible from one of 8 uncontractible P-graphs by a sequence of vertex splitting moves. Also it is shown that a P-graph is min
A balanced pair in an ordered set $P=(V,leq)$ is a pair $(x,y)$ of elements of $V$ such that the proportion of linear extensions of $P$ that put $x$ before $y$ is in the real interval $[1/3, 2/3]$. We define the notion of a good pair and claim any or
A deterministic finite automaton is synchronizing if there exists a word that sends all states of the automaton to the same state. v{C}erny conjectured in 1964 that a synchronizing automaton with $n$ states has a synchronizing word of length at most
A generalized spline on a graph $G$ with edges labeled by ideals in a ring $R$ consists of a vertex-labeling by elements of $R$ so that the labels on adjacent vertices $u, v$ differ by an element of the ideal associated to the edge $uv$. We study the