ﻻ يوجد ملخص باللغة العربية
In computational physics and mathematical physics, modal analysis method has been one of important study topics. The central purposes of this Post-Doctoral Concluding Report are (1) to reveal the core position of energy viewpoint in the realm of electromagnetic modal analysis; (2) to show how to do energy-viewpoint-based modal analysis for various electromagnetic structures. The major conclusions of this report are that: energy conservation law governs the energy utilization processes of various electromagnetic structures, and its energy source term sustains the steady energy utilization processes; the whole modal space of an electromagnetic structure is spanned by a series of energy-decoupled modes (DMs), which dont have net energy exchange in any integral period; the DMs can be effectively constructed by orthogonalizing energy source operator, which is just the operator form of the energy source term. Specifically speaking: in classical electromagnetism, energy conservation law has five different manifestation forms, that are power transport theorem (PTT), partial-structure-oriented work-energy theorem (PS-WET), entire-structure-oriented work-energy theorem (ES-WET), Poyntings theorem (PtT), and Lorentzs reciprocity theorem (LRT) forms; the energy source terms in the first four forms are formulated as input power operator (IPO), partial-structure-oriented driving power operator (PS-DPO), entire-structure-oriented driving power operator (ES-DPO), and Poyntings flux operator (PtFO); the DMs of wave-port-fed, lumped-port-driven, externally-incident-field-driven, and energy-dissipating/self-oscillating electromagnetic structures can be constructed by orthogonalizing IPO, PS-DPO, ES-DPO, and PtFO; LRT guarantees that the obtained DMs satisfy some useful Em-Hn orthogonality relations, where the Em and Hn represent the electric field of the m-th DM and the magnetic field of the n-th DM.
Traditionally, all working modes of a perfect electric conductor are classified into capacitive modes, resonant modes, and inductive modes, and the resonant modes are further classified into internal resonant modes and external resonant modes. In thi
In this paper, we discuss the Maxwell equations in terms of differential forms, both in the 3-dimensional space and in the 4-dimensional space-time manifold. Further, we view the classical electrodynamics as the curvature of a line bundle, and fit it into gauge theory.
In transformation optics, the space transformation is viewed as the deformation of a material. The permittivity and permeability tensors in the transformed space are found to correlate with the deformation field of the material. By solving the Laplac
We present a new methodology for calculating the electromagnetic radiation from accelerated charged particles. Our formulation --- the `endpoint formulation --- combines numerous results developed in the literature in relation to radiation arising fr
We consider the Einstein equation, where the common electromagnetic energy momentum tensor is replaced by its generalized equivalent as suggested in our earlier paper (A.L. Kholmetskii et al. Phys. Scr. 83, 055406 (2011)). Now we show that with this