ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of a Wind-Blown Bubble Associated with the Supernova Remnant G346.6-0.2: A Hint for the Origin of Recombining Plasma

96   0   0.0 ( 0 )
 نشر من قبل Hidetoshi Sano
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on CO and HI studies of the mixed-morphology supernova remnant (SNR) G346.6$-$0.2. We find a wind-blown bubble along the radio continuum shell with an expansion velocity of $sim10$ km s$^{-1}$, which was likely formed by strong stellar winds from the high-mass progenitor of the SNR. The radial velocities of the CO/HI bubbles at $V_mathrm{LSR} = -82$-$-59$ km s$^{-1}$ are also consistent with those of shock-excited 1720 MHz OH masers. The molecular cloud in the northeastern shell shows a high-kinetic temperature of $sim60$ K, suggesting that shock-heating occurred. The HI absorption studies imply that G346.6$-$0.2 is located on the far side of the Galactic center from us, and the kinematic distance of the SNR is derived to be $11.1_{-0.3}^{+0.5}$ kpc. We find that the CO line intensity has no specific correlation with the electron temperature of recombining plasma, implying that the recombining plasma in G346.6$-$0.2 was likely produced by adiabatic cooling. With our estimates of the interstellar proton density 280 cm$^{-3}$ and gamma-ray luminosity $< 5.8 times 10^{34}$ erg s$^{-1}$, the total energy of accelerated cosmic rays $W_{rm p} < 9.3 times 10^{47}$ erg is obtained. A comparison of the age-$W_{rm p}$ relation to other SNRs suggests that most of the accelerated cosmic rays in G346.6$-$0.2 have been escaped from the SNR shell.



قيم البحث

اقرأ أيضاً

We present the results of an X-ray spectral analysis of the northeast region of the candidate supernova remnant G189.6+3.3 with Suzaku. K-shell lines from highly ionized Ne, Mg, Si, and S were detected in the spectrum for the first time. In addition, a radiative recombining continuum (RRC) from He-like Si was clearly seen near 2.5 keV. This detection of an RRC reveals for the first time that G189.6+3.3 possesses an X-ray-emitting recombining plasma (RP). The extracted X-ray spectrum in the 0.6-10.0 keV energy band is well fitted with a model consisting of a collisional ionization equilibrium plasma component (associated with the interstellar medium) and an RP component (associated with the ejecta). The spectral feature shows that G189.6+3.3 is most likely to be a middle-aged SNR with an RP.
Recent X-ray study of middle-aged supernova remnants (SNRs) reveals strong radiative recombination continua (RRCs) associated with overionized plasmas, of which the origin still remains uncertain. We report our discovery of an RRC in the middle-aged SNR 3C 391. If the X-ray spectrum is fitted with a two-temperature plasma model in collisional ionization equilibrium (CIE), residuals of Si XIV Ly alpha line at 2.006 keV, S XVI Ly alpha line at 2.623 keV and the edge of RRC of Si XIII at 2.666 keV are found. The X-ray spectrum is better described by a composite model consisting of a CIE plasma and a recombining plasma (RP). The abundance pattern suggests that the RP is associated to the ejecta from a core-collapse supernova with a progenitor star of 15 solar mass. There is no significant difference of the recombining plasma parameters between the southeast region and the northwest region surrounded by dense molecular clouds. We also find a hint of Fe I K alpha line at 6.4 keV (~2.4 sigma detection) from the southeast region of the SNR.
Recent discoveries of recombining plasmas (RPs) in supernova remnants (SNRs) have dramatically changed our understanding of SNR evolution. To date, a dozen of RP SNRs have been identified in the Galaxy. Here we present Suzaku deep observations of fou r SNRs in the Large Magellanic Cloud (LMC), N49, N49B, N23, and DEM L71, for accurate determination of their plasma state. Our uniform analysis reveals that only N49 is in the recombining state among them, which is the first robust discovery of a RP from an extra-galactic SNR. Given that RPs have been identified only in core-collapse SNRs, our result strongly suggests a massive star origin of this SNR. On the other hand, no clear evidence for a RP is confirmed in N23, from which detection of recombination lines and continua was previously claimed. Comparing the physical properties of the RP SNRs identified so far, we find that all of them are categorized into the mixed-morphology class and interacting with surrounding molecular clouds. This might be a key to solve formation mechanisms of the RPs.
We present an X-ray imaging and spectroscopic study of the molecular cloud interacting mixed-morphology (MM) supernova remnant (SNR) G346.6-0.2 using XMM-Newton. The X-ray spectrum of the remnant is well described by a recombining plasma that most li kely arises from adiabatic cooling, and has sub-solar abundances of Mg, Si, and S. Our fits also suggest the presence of either an additional power-law component with a photon index of $sim$2, or an additional thermal component with a temperature of $sim$2.0 keV. We investigate the possible origin of this component and suggest that it could arise from either the Galactic ridge X-ray emission, an unidentified pulsar wind nebula or X-ray synchrotron emission from high-energy particles accelerated at the shock. However, deeper, high resolution observations of this object are needed to shed light on the presence and origin of this feature. Based on its morphology, its Galactic latitude, the density of the surrounding environment and its association with a dense molecular cloud, G346.6-0.2 most likely arises from a massive progenitor that underwent core-collapse.
Recent X-ray studies revealed over-ionized recombining plasmas (RPs) in a dozen mixed-morphology (MM) supernova remnants (SNRs). However, the physical process of the over-ionization has not been fully understood yet. Here we report on spatially resol ved spectroscopy of X-ray emission from W44, one of the over-ionized MM-SNRs, using XMM-Newton data from deep observations, aiming to clarify the physical origin of the over-ionization. We find that combination of low electron temperature and low recombination timescale is achieved in the region interacting with dense molecular clouds. Moreover, a clear anti-correlation between the electron temperature and the recombining timescale is obtained from each of the regions with and without the molecular clouds. The results are well explained if the plasma was over-ionized by rapid cooling through thermal conduction with the dense clouds hit by the blast wave of W44. Given that a few other over-ionized SNRs show evidence for adiabatic expansion as the major driver of the rapid cooling, our new result indicates that both processes can contribute to over-ionization in SNRs, with the dominant channel depending on the evolutionary stage.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا