ترغب بنشر مسار تعليمي؟ اضغط هنا

An XMM-Newton Study of the Mixed-Morphology Supernova Remnant G346.6-0.2

101   0   0.0 ( 0 )
 نشر من قبل Katie Auchettl
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an X-ray imaging and spectroscopic study of the molecular cloud interacting mixed-morphology (MM) supernova remnant (SNR) G346.6-0.2 using XMM-Newton. The X-ray spectrum of the remnant is well described by a recombining plasma that most likely arises from adiabatic cooling, and has sub-solar abundances of Mg, Si, and S. Our fits also suggest the presence of either an additional power-law component with a photon index of $sim$2, or an additional thermal component with a temperature of $sim$2.0 keV. We investigate the possible origin of this component and suggest that it could arise from either the Galactic ridge X-ray emission, an unidentified pulsar wind nebula or X-ray synchrotron emission from high-energy particles accelerated at the shock. However, deeper, high resolution observations of this object are needed to shed light on the presence and origin of this feature. Based on its morphology, its Galactic latitude, the density of the surrounding environment and its association with a dense molecular cloud, G346.6-0.2 most likely arises from a massive progenitor that underwent core-collapse.

قيم البحث

اقرأ أيضاً

(Abridged) We present a spatial and spectral X-ray analysis of the Galactic supernova remnant (SNR) G352.7-0.1 using archival data from observations made with XMM-Newton and Chandra. Prior X-ray observations of this SNR revealed a thermal center-fill ed morphology which contrasts with a shell-like radio morphology, thus establishing G352.7$-$0.1 as a mixed-morphology SNR (MMSNRs). Our study confirms that the X-ray emission comes from the SNR interior and must be ejecta-dominated. Spectra obtained with XMM-Newton may be fit satisfactorily with a single thermal component (namely a non-equilibrium ionization component with enhanced abundances of silicon and sulfur). In contrast, spectra extracted by Chandra from certain regions of the SNR cannot always be fit by a single thermal component. For those regions, a second thermal component with solar abundances or two thermal components with different temperatures and thawed silicon and sulfur abundances (respectively) can generate a statistically-acceptable fit. We argue that the former scenario is more physically-plausible: based on parameters of our spectral fits, we calculate physical parameters including X-ray-emitting mass (about 45 solar masses, for solar abundances). We find no evidence for overionization in the X-ray emitting plasma associated with the SNR: this phenomenon has been seen in other MMSNRs. We have conducted a search for a neutron star within the SNR using a hard (2-10 keV) Chandra image but could not identify a firm candidate. We also present (for the first time) the detection of infrared emission from this SNR as detected at 24 micron by MIPS aboard Spitzer. Finally, we discuss the properties of G352.7-0.1 in the context of other ejecta-dominated MMSNRs.
We present an analysis of archival Chandra observations of the mixed-morphology remnant 3C400.2. We analysed spectra of different parts of the remnant to observe if the plasma properties provide hints on the origin of the mixed-morphology class. Thes e remnants often show overionization, which is a sign of rapid cooling of the thermal plasma, and super-solar abundances of elements which is a sign of ejecta emission. Our analysis shows that the thermal emission of 3C400.2 can be well explained by a two component non-equilibrium ionization model, of which one component is underionized, has a high temperature ($kT approx 3.9$ keV) and super-solar abundances, while the other component has a much lower temperature ($kT approx 0.14$ keV), solar abundances and shows signs of overionization. The temperature structure, abundance values and density contrast between the different model components suggest that the hot component comes from ejecta plasma, while the cooler component has an interstellar matter origin. This seems to be the first instance of an overionized plasma found in the outer regions of a supernova remnant, whereas the ejecta component of the inner region is underionized. In addition, the non-ionization equilibrium plasma component associated with the ejecta is confined to the central, brighter parts of the remnant, whereas the cooler component is present mostly in the outer regions. Therefore our data can most naturally be explained by an evolutionary scenario in which the outer parts of the remnant are cooling rapidly due to having swept up high density ISM, while the inner parts are very hot and cooling inefficiently due to low density of the plasma. This is also known as the relic X-ray scenario.
Aims. We report the first detailed X-ray study of the supernova remnant (SNR) G304.6+0.1, achieved with the XMM-Newton mission. Methods. The powerful imaging capability of XMM-Newton was used to study the X-ray characteristics of the remnant at diffe rent energy ranges. The X-ray morphology and spectral properties were analyzed. In addittion, radio and mid-infrared data obtained with the Molonglo Observatory Synthesis Telescope and the Spitzer Space Telescope were used to study the association with the detected X-ray emission and to understand the structure of the SNR at differents wavelengths. Results. The SNR shows an extended and arc-like internal structure in the X-ray band with out a compact point-like source inside the remnant. We find a high column density of NH in the range 2.5-3.5x1022 cm-2, which supports a relatively distant location (d $geq$ 9.7 kpc). The X-ray spectrum exhibits at least three emission lines, indicating that the X-ray emission has a thin thermal plasma origin, although a non-thermal contribution cannot be discarded. The spectra of three different regions (north, center and south) are well represented by a combination of a non-equilibrium ionization (PSHOCK) and a power-law (PL) model. The mid-infrared observations show a bright filamentary structure along the north-south direction coincident with the NW radio shell. This suggests that Kes 17 is propagating in a non-uniform environment with high density and that the shock front is interacting with several adjacent massive molecular clouds. The good correspondence of radio and mid-infrared emissions suggests that the filamentary features are caused by shock compression. The X-ray characteristics and well-known radio parameters indicate that G304.6+0.1 is a middle-aged SNR (2.8-6.4)x104 yr old and a new member of the recently proposed group of mixed-morphology SNRs.
The supernova remnant (SNR) W51C is a Galactic object located in a strongly inhomogeneous interstellar medium with signs of an interaction of the SNR blast wave with dense molecular gas. Diffuse X-ray emission from the interior of the SNR can reveal element abundances in the different emission regions and shed light on the type of supernova (SN) explosion and its progenitor. The hard X-ray emission helps to identify possible candidates for a pulsar formed in the SN explosion and for its pulsar wind nebula (PWN). We have analysed X-ray data obtained with XMM-Newton. Spectral analyses in selected regions were performed. Ejecta emission in the bright western part of the SNR, located next to a complex of dense molecular gas, was confirmed. The Ne and Mg abundances suggest a massive progenitor with a mass of > 20 M_sun. Two extended regions emitting hard X-rays were identified (corresponding to the known sources [KLS2002] HX3 west and CXO J192318.5+140305 discovered with ASCA and Chandra, respectively), each of which has an additional point source inside and shows a power-law spectrum with Gamma ~ 1.8. Based on their X-ray emission, both sources can be classified as PWN candidates.
We present the results of a spectral analysis of the central region of the mixed-morphology supernova remnant HB 9. A prior Ginga observation of this source detected a hard X-ray component above 4 keV and the origin of this particular X-ray component is still unknown. Our results demonstrate that the extracted X-ray spectra are best represented by a model consisting of a collisional ionization equilibrium plasma with a temperature of ~0.1-0.2 keV (interstellar matter component) and an ionizing plasma with a temperature of ~0.6-0.7 keV and an ionization timescale of >1 x 10^{11} cm^{-3} s (ejecta component). No significant X-ray emission was found in the central region above 4 keV. The recombining plasma model reported by a previous work does not explain our spectra.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا