ﻻ يوجد ملخص باللغة العربية
We present a circulant and skew-circulant splitting (CSCS) iterative method for solving large sparse continuous Sylvester equations $AX + XB = C$, where the coefficient matrices $A$ and $B$ are Toeplitz matrices. A theoretical study shows that if the circulant and skew-circulant splitting factors of $A$ and $B$ are positive semi-definite and at least one is positive definite (not necessarily Hermitian), then the CSCS method converges to the unique solution of the Sylvester equation. In addition, we obtain an upper bound for the convergence factor of the CSCS iteration. This convergence factor depends only on the eigenvalues of the circulant and skew-circulant splitting matrices. A computational comparison with alternative methods reveals the efficiency and reliability of the proposed method.
Circulant preconditioners for functions of matrices have been recently of interest. In particular, several authors proposed the use of the optimal circulant preconditioners as well as the superoptimal circulant preconditioners in this context and num
We consider the uniqueness of solution (i.e., nonsingularity) of systems of $r$ generalized Sylvester and $star$-Sylvester equations with $ntimes n$ coefficients. After several reductions, we show that it is sufficient to analyze periodic systems hav
This paper introduces and analyzes a preconditioned modified of the Hermitian and skew-Hermitian splitting (PMHSS). The large sparse continuous Sylvester equations are solved by PMHSS iterative algorithm based on nonHermitian, complex, positive defin
In this paper, we study temporal splitting algorithms for multiscale problems. The exact fine-grid spatial problems typically require some reduction in degrees of freedom. Multiscale algorithms are designed to represent the fine-scale details on a co
A Schur ring (S-ring) over a group $G$ is called separable if every of its similaritities is induced by isomorphism. We establish a criterion for an S-ring to be separable in the case when the group $G$ is cyclic. Using this criterion, we prove that