ترغب بنشر مسار تعليمي؟ اضغط هنا

On separability problem for circulant S-rings

128   0   0.0 ( 0 )
 نشر من قبل Ilya Ponomarenko
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A Schur ring (S-ring) over a group $G$ is called separable if every of its similaritities is induced by isomorphism. We establish a criterion for an S-ring to be separable in the case when the group $G$ is cyclic. Using this criterion, we prove that any S-ring over a cyclic $p$-group is separable and that the class of separable circulant S-rings is closed with respect to duality.



قيم البحث

اقرأ أيضاً

Let $G$ be a finite group. There is a natural Galois correspondence between the permutation groups containing $G$ as a regular subgroup, and the Schur rings (S-rings) over~$G$. The problem we deal with in the paper, is to characterize those S-rings t hat are closed under this correspondence, when the group $G$ is cyclic (the schurity problem for circulant S-rings). It is proved that up to a natural reduction, the characteristic property of such an S-ring is to be a certain algebraic fusion of its coset closure introduced and studied in the paper. Basing on this characterization we show that the schurity problem is equivalent to the consistency of a modular linear system associated with a circulant S-ring under consideration. As a byproduct we show that a circulant S-ring is Galois closed if and only if so is its dual.
The commuting graph of a group G, denoted by Gamma(G), is the simple undirected graph whose vertices are the non-central elements of G and two distinct vertices are adjacent if and only if they commute. Let Z_m be the commutative ring of equivalence classes of integers modulo m. In this paper we investigate the connectivity and diameters of the commuting graphs of GL(n,Z_m) to contribute to the conjecture that there is a universal upper bound on diam(Gamma(G)) for any finite group G when Gamma(G) is connected. For any composite m, it is shown that Gamma(GL(n,Z_m)) and Gamma(M(n,Z_m)) are connected and diam(Gamma(GL(n,Z_m))) = diam(Gamma(M(n,Z_m))) = 3. For m a prime, the instances of connectedness and absolute bounds on the diameters of Gamma(GL(n,Z_m)) and Gamma(M(n,Z_m)) when they are connected are concluded from previous results.
We prove that the finitely presentable subgroups of residually free groups are separable and that the subgroups of type $mathrm{FP}_infty$ are virtual retracts. We describe a uniform solution to the membership problem for finitely presentable subgroups of residually free groups.
159 - Henry Wilton 2008
We use wreath products to provide criteria for a group to be conjugacy separable or omnipotent. These criteria are in terms of virtual retractions onto cyclic subgroups. We give two applications: a straightforward topological proof of the theorem of Stebe that infinite-order elements of Fuchsian groups (of the first type) are conjugacy distinguished, and a proof that surface groups are omnipotent.
We present a review of the problem of finding out whether a quantum state of two or more parties is entangled or separable. After a formal definition of entangled states, we present a few criteria for identifying entangled states and introduce some e ntanglement measures. We also provide a classification of entangled states with respect to their usefulness in quantum dense coding, and present some aspects of multipartite entanglement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا