ﻻ يوجد ملخص باللغة العربية
A Schur ring (S-ring) over a group $G$ is called separable if every of its similaritities is induced by isomorphism. We establish a criterion for an S-ring to be separable in the case when the group $G$ is cyclic. Using this criterion, we prove that any S-ring over a cyclic $p$-group is separable and that the class of separable circulant S-rings is closed with respect to duality.
Let $G$ be a finite group. There is a natural Galois correspondence between the permutation groups containing $G$ as a regular subgroup, and the Schur rings (S-rings) over~$G$. The problem we deal with in the paper, is to characterize those S-rings t
The commuting graph of a group G, denoted by Gamma(G), is the simple undirected graph whose vertices are the non-central elements of G and two distinct vertices are adjacent if and only if they commute. Let Z_m be the commutative ring of equivalence
We prove that the finitely presentable subgroups of residually free groups are separable and that the subgroups of type $mathrm{FP}_infty$ are virtual retracts. We describe a uniform solution to the membership problem for finitely presentable subgroups of residually free groups.
We use wreath products to provide criteria for a group to be conjugacy separable or omnipotent. These criteria are in terms of virtual retractions onto cyclic subgroups. We give two applications: a straightforward topological proof of the theorem of
We present a review of the problem of finding out whether a quantum state of two or more parties is entangled or separable. After a formal definition of entangled states, we present a few criteria for identifying entangled states and introduce some e