ﻻ يوجد ملخص باللغة العربية
The valley pseudospin in monolayer transition metal dichalcogenides (TMDs) has been proposed as a new way to manipulate information in various optoelectronic devices. This relies on a large valley polarization that remains stable over long timescales (hundreds of ns). However, time resolved measurements report valley lifetimes of only a few ps. This has been attributed to mechanisms such as phonon-mediated inter-valley scattering and a precession of the valley psedospin through electron-hole exchange. Here we use transient spin grating to directly measure the valley depolarization lifetime in monolayer MoSe$_{2}$. We find a fast valley decay rate that scales linearly with the excitation density at different temperatures. This establishes the presence of strong exciton-exciton Coulomb exchange interactions enhancing the valley depolarization. Our work highlights the microscopic processes inhibiting the efficient use of the exciton valley pseudospin in monolayer TMDs.
The valley degree of freedom is a sought-after quantum number in monolayer transition-metal dichalcogenides. Similar to optical spin orientation in semiconductors, the helicity of absorbed photons can be relayed to the valley (pseudospin) quantum num
In transition metal dichalcogenides layers of atomic scale thickness, the electron-hole Coulomb interaction potential is strongly influenced by the sharp discontinuity of the dielectric function across the layer plane. This feature results in peculia
Semiconducting transition metal dichalcogenide monolayers have emerged as promising candidates for future valleytronics-based quantum information technologies. Two distinct momentum-states of tightly-bound electron-hole pairs in these materials can b
By pumping nonresonantly a MoS$_2$ monolayer at $13$ K under a circularly polarized cw laser, we observe exciton energy redshifts that break the degeneracy between B excitons with opposite spin. The energy splitting increases monotonically with the l
Excitons, Coulomb bound electron-hole pairs, are composite bosons and their interactions in traditional semiconductors lead to condensation and light amplification. The much stronger Coulomb interaction in transition metal dichalcogenides such as WSe