ترغب بنشر مسار تعليمي؟ اضغط هنا

Fairness Properties of Face Recognition and Obfuscation Systems

107   0   0.0 ( 0 )
 نشر من قبل Harrison Rosenberg
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The proliferation of automated facial recognition in various commercial and government sectors has caused significant privacy concerns for individuals. A recent and popular approach to address these privacy concerns is to employ evasion attacks against the metric embedding networks powering facial recognition systems. Face obfuscation systems generate imperceptible perturbations, when added to an image, cause the facial recognition system to misidentify the user. The key to these approaches is the generation of perturbations using a pre-trained metric embedding network followed by their application to an online system, whose model might be proprietary. This dependence of face obfuscation on metric embedding networks, which are known to be unfair in the context of facial recognition, surfaces the question of demographic fairness -- textit{are there demographic disparities in the performance of face obfuscation systems?} To address this question, we perform an analytical and empirical exploration of the performance of recent face obfuscation systems that rely on deep embedding networks. We find that metric embedding networks are demographically aware; they cluster faces in the embedding space based on their demographic attributes. We observe that this effect carries through to the face obfuscation systems: faces belonging to minority groups incur reduced utility compared to those from majority groups. For example, the disparity in average obfuscation success rate on the online Face++ API can reach up to 20 percentage points. Further, for some demographic groups, the average perturbation size increases by up to 17% when choosing a target identity belonging to a different demographic group versus the same demographic group. Finally, we present a simple analytical model to provide insights into these phenomena.



قيم البحث

اقرأ أيضاً

Demographic bias is a significant challenge in practical face recognition systems. Existing methods heavily rely on accurate demographic annotations. However, such annotations are usually unavailable in real scenarios. Moreover, these methods are typ ically designed for a specific demographic group and are not general enough. In this paper, we propose a false positive rate penalty loss, which mitigates face recognition bias by increasing the consistency of instance False Positive Rate (FPR). Specifically, we first define the instance FPR as the ratio between the number of the non-target similarities above a unified threshold and the total number of the non-target similarities. The unified threshold is estimated for a given total FPR. Then, an additional penalty term, which is in proportion to the ratio of instance FPR overall FPR, is introduced into the denominator of the softmax-based loss. The larger the instance FPR, the larger the penalty. By such unequal penalties, the instance FPRs are supposed to be consistent. Compared with the previous debiasing methods, our method requires no demographic annotations. Thus, it can mitigate the bias among demographic groups divided by various attributes, and these attributes are not needed to be previously predefined during training. Extensive experimental results on popular benchmarks demonstrate the superiority of our method over state-of-the-art competitors. Code and trained models are available at https://github.com/Tencent/TFace.
Face authentication is now widely used, especially on mobile devices, rather than authentication using a personal identification number or an unlock pattern, due to its convenience. It has thus become a tempting target for attackers using a presentat ion attack. Traditional presentation attacks use facial images or videos of the victim. Previous work has proven the existence of master faces, i.e., faces that match multiple enrolled templates in face recognition systems, and their existence extends the ability of presentation attacks. In this paper, we perform an extensive study on latent variable evolution (LVE), a method commonly used to generate master faces. We run an LVE algorithm for various scenarios and with more than one database and/or face recognition system to study the properties of the master faces and to understand in which conditions strong master faces could be generated. Moreover, through analysis, we hypothesize that master faces come from some dense areas in the embedding spaces of the face recognition systems. Last but not least, simulated presentation attacks using generated master faces generally preserve the false-matching ability of their original digital forms, thus demonstrating that the existence of master faces poses an actual threat.
Face occlusions, covering either the majority or discriminative parts of the face, can break facial perception and produce a drastic loss of information. Biometric systems such as recent deep face recognition models are not immune to obstructions or other objects covering parts of the face. While most of the current face recognition methods are not optimized to handle occlusions, there have been a few attempts to improve robustness directly in the training stage. Unlike those, we propose to study the effect of generative face completion on the recognition. We offer a face completion encoder-decoder, based on a convolutional operator with a gating mechanism, trained with an ample set of face occlusions. To systematically evaluate the impact of realistic occlusions on recognition, we propose to play the occlusion game: we render 3D objects onto different face parts, providing precious knowledge of what the impact is of effectively removing those occlusions. Extensive experiments on the Labeled Faces in the Wild (LFW), and its more difficult variant LFW-BLUFR, testify that face completion is able to partially restore face perception in machine vision systems for improved recognition.
Face obfuscation (blurring, mosaicing, etc.) has been shown to be effective for privacy protection; nevertheless, object recognition research typically assumes access to complete, unobfuscated images. In this paper, we explore the effects of face obf uscation on the popular ImageNet challenge visual recognition benchmark. Most categories in the ImageNet challenge are not people categories; however, many incidental people appear in the images, and their privacy is a concern. We first annotate faces in the dataset. Then we demonstrate that face blurring -- a typical obfuscation technique -- has minimal impact on the accuracy of recognition models. Concretely, we benchmark multiple deep neural networks on face-blurred images and observe that the overall recognition accuracy drops only slightly (no more than 0.68%). Further, we experiment with transfer learning to 4 downstream tasks (object recognition, scene recognition, face attribute classification, and object detection) and show that features learned on face-blurred images are equally transferable. Our work demonstrates the feasibility of privacy-aware visual recognition, improves the highly-used ImageNet challenge benchmark, and suggests an important path for future visual datasets. Data and code are available at https://github.com/princetonvisualai/imagenet-face-obfuscation.
Most machine learning models are validated and tested on fixed datasets. This can give an incomplete picture of the capabilities and weaknesses of the model. Such weaknesses can be revealed at test time in the real world. The risks involved in such f ailures can be loss of profits, loss of time or even loss of life in certain critical applications. In order to alleviate this issue, simulators can be controlled in a fine-grained manner using interpretable parameters to explore the semantic image manifold. In this work, we propose a framework for learning how to test machine learning algorithms using simulators in an adversarial manner in order to find weaknesses in the model before deploying it in critical scenarios. We apply this model in a face recognition scenario. We are the first to show that weaknesses of models trained on real data can be discovered using simulated samples. Using our proposed method, we can find adversarial synthetic faces that fool contemporary face recognition models. This demonstrates the fact that these models have weaknesses that are not measured by commonly used validation datasets. We hypothesize that this type of adversarial examples are not isolated, but usually lie in connected components in the latent space of the simulator. We present a method to find these adversarial regions as opposed to the typical adversarial points found in the adversarial example literature.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا