ترغب بنشر مسار تعليمي؟ اضغط هنا

A Hypothesis for the Aesthetic Appreciation in Neural Networks

85   0   0.0 ( 0 )
 نشر من قبل Quanshi Zhang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper proposes a hypothesis for the aesthetic appreciation that aesthetic images make a neural network strengthen salient concepts and discard inessential concepts. In order to verify this hypothesis, we use multi-variate interactions to represent salient concepts and inessential concepts contained in images. Furthermore, we design a set of operations to revise images towards more beautiful ones. In experiments, we find that the revised images are more aesthetic than the original ones to some extent.

قيم البحث

اقرأ أيضاً

Existing global convergence guarantees of (stochastic) gradient descent do not apply to practical deep networks in the practical regime of deep learning beyond the neural tangent kernel (NTK) regime. This paper proposes an algorithm, which is ensured to have global convergence guarantees in the practical regime beyond the NTK regime, under a verifiable condition called the expressivity condition. The expressivity condition is defined to be both data-dependent and architecture-dependent, which is the key property that makes our results applicable for practical settings beyond the NTK regime. On the one hand, the expressivity condition is theoretically proven to hold data-independently for fully-connected deep neural networks with narrow hidden layers and a single wide layer. On the other hand, the expressivity condition is numerically shown to hold data-dependently for deep (convolutional) ResNet with batch normalization with various standard image datasets. We also show that the proposed algorithm has generalization performances comparable with those of the heuristic algorithm, with the same hyper-parameters and total number of iterations. Therefore, the proposed algorithm can be viewed as a step towards providing theoretical guarantees for deep learning in the practical regime.
We study how neural networks trained by gradient descent extrapolate, i.e., what they learn outside the support of the training distribution. Previous works report mixed empirical results when extrapolating with neural networks: while feedforward neu ral networks, a.k.a. multilayer perceptrons (MLPs), do not extrapolate well in certain simple tasks, Graph Neural Networks (GNNs) -- structured networks with MLP modules -- have shown some success in more complex tasks. Working towards a theoretical explanation, we identify conditions under which MLPs and GNNs extrapolate well. First, we quantify the observation that ReLU MLPs quickly converge to linear functions along any direction from the origin, which implies that ReLU MLPs do not extrapolate most nonlinear functions. But, they can provably learn a linear target function when the training distribution is sufficiently diverse. Second, in connection to analyzing the successes and limitations of GNNs, these results suggest a hypothesis for which we provide theoretical and empirical evidence: the success of GNNs in extrapolating algorithmic tasks to new data (e.g., larger graphs or edge weights) relies on encoding task-specific non-linearities in the architecture or features. Our theoretical analysis builds on a connection of over-parameterized networks to the neural tangent kernel. Empirically, our theory holds across different training settings.
To make advanced learning machines such as Deep Neural Networks (DNNs) more transparent in decision making, explainable AI (XAI) aims to provide interpretations of DNNs predictions. These interpretations are usually given in the form of heatmaps, eac h one illustrating relevant patterns regarding the prediction for a given instance. Bayesian approaches such as Bayesian Neural Networks (BNNs) so far have a limited form of transparency (model transparency) already built-in through their prior weight distribution, but notably, they lack explanations of their predictions for given instances. In this work, we bring together these two perspectives of transparency into a holistic explanation framework for explaining BNNs. Within the Bayesian framework, the network weights follow a probability distribution. Hence, the standard (deterministic) prediction strategy of DNNs extends in BNNs to a predictive distribution, and thus the standard explanation extends to an explanation distribution. Exploiting this view, we uncover that BNNs implicitly employ multiple heterogeneous prediction strategies. While some of these are inherited from standard DNNs, others are revealed to us by considering the inherent uncertainty in BNNs. Our quantitative and qualitative experiments on toy/benchmark data and real-world data from pathology show that the proposed approach of explaining BNNs can lead to more effective and insightful explanations.
Safety concerns on the deep neural networks (DNNs) have been raised when they are applied to critical sectors. In this paper, we define safety risks by requesting the alignment of the networks decision with human perception. To enable a general metho dology for quantifying safety risks, we define a generic safety property and instantiate it to express various safety risks. For the quantification of risks, we take the maximum radius of safe norm balls, in which no safety risk exists. The computation of the maximum safe radius is reduced to the computation of their respective Lipschitz metrics - the quantities to be computed. In addition to the known adversarial example, reachability example, and invariant example, in this paper we identify a new class of risk - uncertainty example - on which humans can tell easily but the network is unsure. We develop an algorithm, inspired by derivative-free optimization techniques and accelerated by tensor-based parallelization on GPUs, to support efficient computation of the metrics. We perform evaluations on several benchmark neural networks, including ACSC-Xu, MNIST, CIFAR-10, and ImageNet networks. The experiments show that, our method can achieve competitive performance on safety quantification in terms of the tightness and the efficiency of computation. Importantly, as a generic approach, our method can work with a broad class of safety risks and without restrictions on the structure of neural networks.
We introduce tensor field neural networks, which are locally equivariant to 3D rotations, translations, and permutations of points at every layer. 3D rotation equivariance removes the need for data augmentation to identify features in arbitrary orien tations. Our network uses filters built from spherical harmonics; due to the mathematical consequences of this filter choice, each layer accepts as input (and guarantees as output) scalars, vectors, and higher-order tensors, in the geometric sense of these terms. We demonstrate the capabilities of tensor field networks with tasks in geometry, physics, and chemistry.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا