ﻻ يوجد ملخص باللغة العربية
Point cloud registration is a fundamental problem in 3D computer vision. In this paper, we cast point cloud registration into a planning problem in reinforcement learning, which can seek the transformation between the source and target point clouds through trial and error. By modeling the point cloud registration process as a Markov decision process (MDP), we develop a latent dynamic model of point clouds, consisting of a transformation network and evaluation network. The transformation network aims to predict the new transformed feature of the point cloud after performing a rigid transformation (i.e., action) on it while the evaluation network aims to predict the alignment precision between the transformed source point cloud and target point cloud as the reward signal. Once the dynamic model of the point cloud is trained, we employ the cross-entropy method (CEM) to iteratively update the planning policy by maximizing the rewards in the point cloud registration process. Thus, the optimal policy, i.e., the transformation between the source and target point clouds, can be obtained via gradually narrowing the search space of the transformation. Experimental results on ModelNet40 and 7Scene benchmark datasets demonstrate that our method can yield good registration performance in an unsupervised manner.
Aligning partial views of a scene into a single whole is essential to understanding ones environment and is a key component of numerous robotics tasks such as SLAM and SfM. Recent approaches have proposed end-to-end systems that can outperform tradit
In this paper, by modeling the point cloud registration task as a Markov decision process, we propose an end-to-end deep model embedded with the cross-entropy method (CEM) for unsupervised 3D registration. Our model consists of a sampling network mod
Extracting robust and general 3D local features is key to downstream tasks such as point cloud registration and reconstruction. Existing learning-based local descriptors are either sensitive to rotation transformations, or rely on classical handcraft
The performance of surface registration relies heavily on the metric used for the alignment error between the source and target shapes. Traditionally, such a metric is based on the point-to-point or point-to-plane distance from the points on the sour
In this work, we propose UPDesc, an unsupervised method to learn point descriptors for robust point cloud registration. Our work builds upon a recent supervised 3D CNN-based descriptor extraction framework, namely, 3DSmoothNet, which leverages a voxe