ﻻ يوجد ملخص باللغة العربية
The moment-of-fluid (MOF) method is an extension of the volume-of-fluid method with piecewise linear interface construction (VOF-PLIC). By minimizing the least square error of the centroid of the cutting polyhedron, the MOF method reconstructs the linear interface without using any neighboring information. Traditional MOF involves iteration while finding the optimized linear reconstruction. Here, we propose an alternative approach based on a machine learning algorithm: Decision Tree algorithm. A training data set is generated from a list of random cuts of a unit cube by plane. The Decision Tree algorithm extracts the input-output relationship from the training data, so that the resulting function determines the normal vector of the reconstruction plane directly, without any iteration. The present method is tested on a range of popular interface advection test problems. Numerical results show that our approach is much faster than the iteration-based MOF method while provides compatible accuracy with the conventional MOF method.
The moment-of-fluid method (MOF) is an extension of the volume-of-fluid method with piecewise linear interface construction (VOF-PLIC). In MOF reconstruction, the optimized normal vector is determined from the reference centroid and the volume fracti
We present a data-driven approach to construct entropy-based closures for the moment system from kinetic equations. The proposed closure learns the entropy function by fitting the map between the moments and the entropy of the moment system, and thus
In this paper we present a numerical discretization of the coupled elasto-acoustic wave propagation problem based on a Discontinuous Galerkin Spectral Element (DGSE) approach in a three-dimensional setting. The unknowns of the coupled problem are the
We present a novel preconditioning technique for Krylov subspace algorithms to solve fluid-structure interaction (FSI) linearized systems arising from finite element discretizations. An outer Krylov subspace solver preconditioned with a geometric mul
We present a wavelet-based adaptive method for computing 3D multiscale flows in complex, time-dependent geometries, implemented on massively parallel computers. While our focus is on simulations of flapping insects, it can be used for other flow prob