ترغب بنشر مسار تعليمي؟ اضغط هنا

a Decision-Tree based Moment-of-Fluid (DTMOF) Method in 3D rectangular hexahedrons

101   0   0.0 ( 0 )
 نشر من قبل Zhouteng Ye
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The moment-of-fluid (MOF) method is an extension of the volume-of-fluid method with piecewise linear interface construction (VOF-PLIC). By minimizing the least square error of the centroid of the cutting polyhedron, the MOF method reconstructs the linear interface without using any neighboring information. Traditional MOF involves iteration while finding the optimized linear reconstruction. Here, we propose an alternative approach based on a machine learning algorithm: Decision Tree algorithm. A training data set is generated from a list of random cuts of a unit cube by plane. The Decision Tree algorithm extracts the input-output relationship from the training data, so that the resulting function determines the normal vector of the reconstruction plane directly, without any iteration. The present method is tested on a range of popular interface advection test problems. Numerical results show that our approach is much faster than the iteration-based MOF method while provides compatible accuracy with the conventional MOF method.



قيم البحث

اقرأ أيضاً

The moment-of-fluid method (MOF) is an extension of the volume-of-fluid method with piecewise linear interface construction (VOF-PLIC). In MOF reconstruction, the optimized normal vector is determined from the reference centroid and the volume fracti on by iteration. The state-of-art work by citet{milcent_moment--fluid_2020} proposed an analytic gradient of the objective function, which greatly reduces the computational cost. In this study, we further accelerate the MOF reconstruction algorithm by using Gauss-Newton iteration instead of Broyden-Fletcher-Goldfarb-Shanno (BFGS) iteration. We also propose an improved initial guess for MOF reconstruction, which improves the efficiency and the robustness of the MOF reconstruction algorithm. Our implementation of the code and test cases are available on our Github repository.
We present a data-driven approach to construct entropy-based closures for the moment system from kinetic equations. The proposed closure learns the entropy function by fitting the map between the moments and the entropy of the moment system, and thus does not depend on the space-time discretization of the moment system and specific problem configurations such as initial and boundary conditions. With convex and $C^2$ approximations, this data-driven closure inherits several structural properties from entropy-based closures, such as entropy dissipation, hyperbolicity, and H-Theorem. We construct convex approximations to the Maxwell-Boltzmann entropy using convex splines and neural networks, test them on the plane source benchmark problem for linear transport in slab geometry, and compare the results to the standard, optimization-based M$_N$ closures. Numerical results indicate that these data-driven closures provide accurate solutions in much less computation time than the M$_N$ closures.
In this paper we present a numerical discretization of the coupled elasto-acoustic wave propagation problem based on a Discontinuous Galerkin Spectral Element (DGSE) approach in a three-dimensional setting. The unknowns of the coupled problem are the displacement field and the velocity potential, in the elastic and the acoustic domains, respectively, thereby resulting in a symmetric formulation. After stating the main theoretical results, we assess the performance of the method by convergence tests carried out on both matching and non-matching grids, and we simulate realistic scenarios where elasto-acoustic coupling occurs. In particular, we consider the case of Scholte waves and the scattering of elastic waves by an underground acoustic cavity. Numerical simulations are carried out by means of the code SPEED, available at http://speed.mox.polimi.it.
We present a novel preconditioning technique for Krylov subspace algorithms to solve fluid-structure interaction (FSI) linearized systems arising from finite element discretizations. An outer Krylov subspace solver preconditioned with a geometric mul tigrid (GMG) algorithm is used, where for the multigrid level sub-solvers, a field-split (FS) preconditioner is proposed. The block structure of the FS preconditioner is derived using the physical variables as splitting strategy. To solve the subsystems originated by the FS preconditioning, an additive Schwarz (AS) block strategy is employed. The proposed field-split preconditioner is tested on biomedical FSI applications. Both 2D and 3D simulations are carried out considering aneurysm and venous valve geometries. The performance of the FS preconditioner is compared with that of a second preconditioner of pure domain decomposition type.
We present a wavelet-based adaptive method for computing 3D multiscale flows in complex, time-dependent geometries, implemented on massively parallel computers. While our focus is on simulations of flapping insects, it can be used for other flow prob lems, including turbulence, as well. The incompressible fluid is modeled with an artificial compressibility approach in order to avoid solving elliptical problems. No-slip and in/outflow boundary conditions are imposed using volume penalization. The governing equations are discretized on a locally uniform Cartesian grid with centered finite differences, and integrated in time with a Runge--Kutta scheme, both of 4th order. The domain is partitioned into cubic blocks with equidistant grids with different resolution and, for each block, biorthogonal interpolating wavelets are used as refinement indicators and prediction operators. Thresholding the wavelet coefficients allows to generate dynamically evolving grids, and an adaption strategy tracks the solution in both space and scale. Blocks are distributed among MPI processes and the global topology of the grid is encoded using a tree-like data structure. Analyzing the different physical and numerical parameters allows balancing their individual error contributions and thus ensures optimal convergence while minimizing computational effort. Different validation tests score accuracy and performance of our new open source code, WABBIT (Wavelet Adaptive Block-Based solver for Interactions with Turbulence), on massively parallel computers using fully adaptive grids. Flow simulations of flapping insects demonstrate its applicability to complex, bio-inspired problems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا