ﻻ يوجد ملخص باللغة العربية
We present a data-driven approach to construct entropy-based closures for the moment system from kinetic equations. The proposed closure learns the entropy function by fitting the map between the moments and the entropy of the moment system, and thus does not depend on the space-time discretization of the moment system and specific problem configurations such as initial and boundary conditions. With convex and $C^2$ approximations, this data-driven closure inherits several structural properties from entropy-based closures, such as entropy dissipation, hyperbolicity, and H-Theorem. We construct convex approximations to the Maxwell-Boltzmann entropy using convex splines and neural networks, test them on the plane source benchmark problem for linear transport in slab geometry, and compare the results to the standard, optimization-based M$_N$ closures. Numerical results indicate that these data-driven closures provide accurate solutions in much less computation time than the M$_N$ closures.
In this work we analyze the entropic properties of the Euler equations when the system is closed with the assumption of a polytropic gas. In this case, the pressure solely depends upon the density of the fluid and the energy equation is not necessary
We study a family of structure-preserving deterministic numerical schemes for Lindblad equations, and carry out detailed error analysis and absolute stability analysis. Both error and absolute stability analysis are validated by numerical examples.
In this paper, we present a systematic stability analysis of the quadrature-based moment method (QBMM) for the one-dimensional Boltzmann equation with BGK or Shakhov models. As reported in recent literature, the method has revealed its potential for
In this work we consider an extension of a recently proposed structure preserving numerical scheme for nonlinear Fokker-Planck-type equations to the case of nonconstant full diffusion matrices. While in existing works the schemes are formulated in a
This work develops entropy-stable positivity-preserving DG methods as a computational scheme for Boltzmann-Poisson systems modeling the pdf of electronic transport along energy bands in semiconductor crystal lattices. We pose, using spherical or ener