ترغب بنشر مسار تعليمي؟ اضغط هنا

Vertex-weighted Digraphs and Freeness of Arrangements Between Shi and Ish

252   0   0.0 ( 0 )
 نشر من قبل Shuhei Tsujie
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce and study a digraph analogue of Stanleys $psi$-graphical arrangements from the perspectives of combinatorics and freeness. Our arrangements form a common generalization of various classes of arrangements in literature including the Catalan arrangement, the Shi arrangement, the Ish arrangement, and especially the arrangements interpolating between Shi and Ish recently introduced by Duarte and Guedes de Oliveira. The arrangements between Shi and Ish all are proved to have the same characteristic polynomial with all integer roots, thus raising the natural question of their freeness. We define two operations on digraphs, which we shall call king and coking elimination operations and prove that subject to certain conditions on the weight $psi$, the operations preserve the characteristic polynomials and freeness of the associated arrangements. As an application, we affirmatively prove that the arrangements between Shi and Ish all are free, and among them only the Ish arrangement has supersolvable cone.



قيم البحث

اقرأ أيضاً

The Ish arrangement was introduced by Armstrong to give a new interpretation of the $q,t$-Catalan numbers of Garsia and Haiman. Armstrong and Rhoades showed that there are some striking similarities between the Shi arrangement and the Ish arrangement and posed some problems. One of them is whether the Ish arrangement is a free arrangement or not. In this paper, we verify that the Ish arrangement is supersolvable and hence free. Moreover, we give a necessary and sufficient condition for the deleted Ish arrangement to be free.
Let $ G $ be a simple graph of $ ell $ vertices $ {1, dots, ell } $ with edge set $ E_{G} $. The graphical arrangement $ mathcal{A}_{G} $ consists of hyperplanes $ {x_{i}-x_{j}=0} $, where $ {i, j } in E_{G} $. It is well known that three properties, chordality of $ G $, supersolvability of $ mathcal{A}_{G} $, and freeness of $ mathcal{A}_{G} $ are equivalent. Recently, Richard P. Stanley introduced $ psi $-graphical arrangement $ mathcal{A}_{G, psi} $ as a generalization of graphical arrangements. Lili Mu and Stanley characterized the supersolvability of the $ psi $-graphical arrangements and conjectured that the freeness and the supersolvability of $ psi $-graphical arrangements are equivalent. In this paper, we will prove the conjecture.
271 - Takuro Abe , Hiroaki Terao 2010
Let $W$ be a finite Weyl group and $A$ be the corresponding Weyl arrangement. A deformation of $A$ is an affine arrangement which is obtained by adding to each hyperplane $HinA$ several parallel translations of $H$ by the positive root (and its integ er multiples) perpendicular to $H$. We say that a deformation is $W$-equivariant if the number of parallel hyperplanes of each hyperplane $Hin A$ depends only on the $W$-orbit of $H$. We prove that the conings of the $W$-equivariant deformations are free arrangements under a Shi-Catalan condition and give a formula for the number of chambers. This generalizes Yoshinagas theorem conjectured by Edelman-Reiner.
221 - Takuro Abe , Hiroaki Terao 2014
In this article we prove that the ideal-Shi arrangements are free central arrangements of hyperplanes satisfying the dual-partition formula. Then it immediately follows that there exists a saturated free filtration of the cone of any affine Weyl arra ngement such that each filter is a free subarrangement satisfying the dual-partition formula. This generalizes the main result in cite{ABCHT} which affirmatively settled a conjecture by Sommers and Tymoczko cite{SomTym}.
The braid arrangement is the Coxeter arrangement of the type $A_ell$. The Shi arrangement is an affine arrangement of hyperplanes consisting of the hyperplanes of the braid arrangement and their parallel translations. In this paper, we give an explic it basis construction for the derivation module of the cone over the Shi arrangement. The essential ingredient of our recipe is the Bernoulli polynomials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا