ﻻ يوجد ملخص باللغة العربية
Following a suggestion of Hovey and Strickland, we study the category of $K(k) vee K(k+1) vee cdots vee K(n)$-local spectra. When $k = 0$, this is equivalent to the category of $E(n)$-local spectra, while for $k = n$, this is the category of $K(n)$-local spectra, both of which have been studied in detail by Hovey and Strickland. Based on their ideas, we classify the localizing and colocalizing subcategories, and give characterizations of compact and dualizable objects. We construct an Adams type spectral sequence and show that when $p gg n$ it collapses with a horizontal vanishing line above filtration degree $n^2+n-k$ at the $E_2$-page for the sphere spectrum. We then study the Picard group of $K(k) vee K(k+1) vee cdots vee K(n)$-local spectra, showing that this group is algebraic, in a suitable sense, when $p gg n$. We also consider a version of Gross--Hopkins duality in this category. A key concept throughout is the use of descent.
In their work on the period map and the dualizing sheaf for Lubin-Tate space, Gross and the second author wrote down an equivalence between the Spanier-Whitehead and Brown-Comenetz duals of certain type $n$-complexes in the $K(n)$-local category at l
For a finite group $G$, there is a map $RO(G) to {rm Pic}(Sp^G)$ from the real representation ring of $G$ to the Picard group of $G$-spectra. This map is not known to be surjective in general, but we prove that when $G$ is cyclic this map is indeed s
For each prime $p$, we define a $t$-structure on the category $widehat{S^{0,0}}/tautext{-}mathbf{Mod}_{harm}^b$ of harmonic $mathbb{C}$-motivic left module spectra over $widehat{S^{0,0}}/tau$, whose MGL-homology has bounded Chow-Novikov degree, such
Let n geq 1 and let p be any prime. Also, let E_n be the Lubin-Tate spectrum, G_n the extended Morava stabilizer group, and K(n) the nth Morava K-theory spectrum. Then work of Devinatz and Hopkins and some results due to Behrens and the first author
We give a method for computing the C_2-equivariant homotopy groups of the Betti realization of a p-complete cellular motivic spectrum over R in terms of its motivic homotopy groups. More generally, we show that Betti realization presents the C_2-equi