ترغب بنشر مسار تعليمي؟ اضغط هنا

Every K(n)-local spectrum is the homotopy fixed points of its Morava module

90   0   0.0 ( 0 )
 نشر من قبل Daniel Davis
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let n geq 1 and let p be any prime. Also, let E_n be the Lubin-Tate spectrum, G_n the extended Morava stabilizer group, and K(n) the nth Morava K-theory spectrum. Then work of Devinatz and Hopkins and some results due to Behrens and the first author of this note, show that if X is a finite spectrum, then the localization L_{K(n)}(X) is equivalent to the homotopy fixed point spectrum (L_{K(n)}(E_n wedge X))^{hG_n}, which is formed with respect to the continuous action of G_n on L_{K(n)}(E_n wedge X). In this note, we show that this equivalence holds for any (S-cofibrant) spectrum X. Also, we show that for all such X, the strongly convergent Adams-type spectral sequence abutting to pi_ast(L_{K(n)}(X)) is isomorphic to the descent spectral sequence that abuts to pi_ast((L_{K(n)}(E_n wedge X))^{hG_n}).

قيم البحث

اقرأ أيضاً

123 - Daniel G. Davis 2013
If K is a discrete group and Z is a K-spectrum, then the homotopy fixed point spectrum Z^{hK} is Map_*(EK_+, Z)^K, the fixed points of a familiar expression. Similarly, if G is a profinite group and X is a discrete G-spectrum, then X^{hG} is often gi ven by (H_{G,X})^G, where H_{G,X} is a certain explicit construction given by a homotopy limit in the category of discrete G-spectra. Thus, in each of two common equivariant settings, the homotopy fixed point spectrum is equal to the fixed points of an explicit object in the ambient equivariant category. We enrich this pattern by proving in a precise sense that the discrete G-spectrum H_{G,X} is just a profinite version of Map_*(EK_+, Z): at each stage of its construction, H_{G,X} replicates in the setting of discrete G-spectra the corresponding stage in the formation of Map_*(EK_+, Z) (up to a certain natural identification).
131 - Drew Heard 2021
Following a suggestion of Hovey and Strickland, we study the category of $K(k) vee K(k+1) vee cdots vee K(n)$-local spectra. When $k = 0$, this is equivalent to the category of $E(n)$-local spectra, while for $k = n$, this is the category of $K(n)$-l ocal spectra, both of which have been studied in detail by Hovey and Strickland. Based on their ideas, we classify the localizing and colocalizing subcategories, and give characterizations of compact and dualizable objects. We construct an Adams type spectral sequence and show that when $p gg n$ it collapses with a horizontal vanishing line above filtration degree $n^2+n-k$ at the $E_2$-page for the sphere spectrum. We then study the Picard group of $K(k) vee K(k+1) vee cdots vee K(n)$-local spectra, showing that this group is algebraic, in a suitable sense, when $p gg n$. We also consider a version of Gross--Hopkins duality in this category. A key concept throughout is the use of descent.
In this paper we use the approach introduced in an earlier paper by Goerss, Henn, Mahowald and Rezk in order to analyze the homotopy groups of L_{K(2)}V(0), the mod-3 Moore spectrum V(0) localized with respect to Morava K-theory K(2). These homotopy groups have already been calculated by Shimomura. The results are very complicated so that an independent verification via an alternative approach is of interest. In fact, we end up with a result which is more precise and also differs in some of its details from that of Shimomura. An additional bonus of our approach is that it breaks up the result into smaller and more digestible chunks which are related to the K(2)-localization of the spectrum TMF of topological modular forms and related spectra. Even more, the Adams-Novikov differentials for L_{K(2)}V(0) can be read off from those for TMF.
96 - Daniel A. Ramras 2015
We give a new description of Rosenthals generalized homotopy fixed point spaces as homotopy limits over the orbit category. This is achieved using a simple categorical model for classifying spaces with respect to families of subgroups.
We introduce a computationally tractable way to describe the $mathbb Z$-homotopy fixed points of a $C_{n}$-spectrum $E$, producing a genuine $C_{n}$ spectrum $E^{hnmathbb Z}$ whose fixed and homotopy fixed points agree and are the $mathbb Z$-homotopy fixed points of $E$. These form a piece of a contravariant functor from the divisor poset of $n$ to genuine $C_{n}$-spectra, and when $E$ is an $N_{infty}$-ring spectrum, this functor lifts to a functor of $N_{infty}$-ring spectra. For spectra like the Real Johnson--Wilson theories or the norms of Real bordism, the slice spectral sequence provides a way to easily compute the $RO(G)$-graded homotopy groups of the spectrum $E^{hnmathbb Z}$, giving the homotopy groups of the $mathbb Z$-homotopy fixed points. For the more general spectra in the contravariant functor, the slice spectral sequences interpolate between the one for the norm of Real bordism and the especially simple $mathbb Z$-homotopy fixed point case, giving us a family of new tools to simplify slice computations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا