ﻻ يوجد ملخص باللغة العربية
Topological nodal-line semimetals offer an interesting research platform to explore novel phenomena associated with its torus-shaped Fermi surface. Here, we study magnetotransport in the massive nodal-line semimetal with spin-orbit coupling and finite Berry curvature distribution which exists in many candidates. The magnetic field leads to a deformation of the Fermi torus through its coupling to the orbital magnetic moment, which turns out to be the main scenario of the magnetoresistivity (MR) induced by the Berry curvature effect. We show that a small deformation of the Fermi surface yields a positive MR $propto B^2$, different from the negative MR by pure Berry curvature effect in other topological systems. As the magnetic field increases to a critical value, a topological Lifshitz transition of the Fermi surface can be induced, and the MR inverts its sign at the same time. The temperature dependence of the MR is investigated, which shows a totally different behavior before and after the Lifshitz transition. Our work uncovers a novel scenario of the MR induced solely by the deformation of the Fermi surface and establishes a relation between the Fermi surface topology and the sign of the MR.
We study the frequency-dependent conductivity of nodal line semimetals (NLSMs), focusing on the effects of carrier density and energy dispersion on the nodal line. We find that the low-frequency conductivity has a rich spectral structure which can be
We review the recent, mainly theoretical, progress in the study of topological nodal line semimetals in three dimensions. In these semimetals, the conduction and the valence bands cross each other along a one-dimensional curve in the three-dimensiona
We consider the impact of disorder on the spectrum of three-dimensional nodal-line semimetals. We show that the combination of disorder and a tilted spectrum naturally leads to a non-Hermitian self-energy contribution that can split a nodal line into
The existence and topological classification of lower-dimensional Fermi surfaces is often tied to the crystal symmetries of the underlying lattice systems. Artificially engineered lattices, such as heterostructures and other superlattices, provide pr
Electrons with large kinetic energy have a superconducting instability for infinitesimal attractive interactions. Quenching the kinetic energy and creating a flat band renders an infinitesimal repulsive interaction the relevant perturbation. Thus, fl