ﻻ يوجد ملخص باللغة العربية
In this work we investigate the stability of an algebraically localized phase subject to periodic driving. First, we focus on a non-interacting model exhibiting algebraically localized single-particle modes. For this model we find numerically that the algebraically localized phase is stable under driving, meaning that the system remains localized at arbitrary frequencies. We support this result with analytical considerations using simple renormalization group arguments. Second, we inspect the case in which short-range interactions are added. By studying both, the eigenstates properties of the Floquet Hamiltonian and the out-of-equilibrium dynamics in the interacting model, we provide evidence that ergodicity is restored at any driving frequencies. In particular, we observe that for the accessible system sizes localization sets in at driving frequency that are comparable with the many-body bandwidth and thus it might be only transient, suggesting that the system might thermalize in the thermodynamic limit.
We study many-body localised quantum systems subject to periodic driving. We find that the presence of a mobility edge anywhere in the spectrum is enough to lead to delocalisation for any driving strength and frequency. By contrast, for a fully local
Sufficient disorder is believed to localize static and periodically-driven interacting chains. With quasiperiodic driving by $D$ incommensurate tones, the fate of this many-body localization (MBL) is unknown. We argue that randomly disordered MBL exi
Subsystems of strongly disordered, interacting quantum systems can fail to thermalize because of the phenomenon of many-body localization (MBL). In this article, we explore a tensor network description of the eigenspectra of such systems. Specificall
The many-body localization transition (MBLT) between ergodic and many-body localized phase in disordered interacting systems is a subject of much recent interest. Statistics of eigenenergies is known to be a powerful probe of crossovers between ergod
We theoretically study correlations present deep in the spectrum of many-body-localized systems. An exact analytical expression for the spectral form factor of Poisson spectra can be obtained and is shown to agree well with numerical results on two m