ﻻ يوجد ملخص باللغة العربية
Velocity fields can be reconstructed at cosmological scales from their influence on the correlation between the cosmic microwave background and large-scale structure. Effects that induce such correlations include the kinetic Sunyaev Zeldovich (kSZ) effect and the moving-lens effect, both of which will be measured to high precision with upcoming cosmology experiments. Galaxy measurements also provide a window into measuring velocities from the effect of redshift-space distortions (RSDs). The information that can be accessed from the kSZ or RSDs, however, is limited by astrophysical uncertainties and systematic effects, which may significantly reduce our ability to constrain cosmological parameters such as $fsigma_8$. In this paper, we show how the large-scale transverse-velocity field, which can be reconstructed from measurements of the moving-lens effect, can be used to measure $fsigma_8$ to high precision.
We assess the prospects for detecting the moving lens effect using cosmological surveys. The bulk motion of cosmological structure induces a small-scale dipolar temperature anisotropy of the cosmic microwave radiation (CMB), centered around halos and
We present a detailed comparison between the well-known SPH code GADGET and the new moving-mesh code AREPO on a number of hydrodynamical test problems. Through a variety of numerical experiments we establish a clear link between test problems and sys
We investigate the nature of gas accretion onto haloes and galaxies at z=2 using cosmological hydrodynamic simulations run with the moving mesh code AREPO. Implementing a Monte Carlo tracer particle scheme to determine the origin and thermodynamic hi
We compare the structural properties of galaxies formed in cosmological simulations using the smoothed particle hydrodynamics (SPH) code GADGET with those using the moving-mesh code AREPO. Both codes employ identical gravity solvers and the same sub-
We discuss cosmological hydrodynamic simulations of galaxy formation performed with the new moving-mesh code AREPO, which promises higher accuracy compared with the traditional SPH technique that has been widely employed for this problem. We use an i