ﻻ يوجد ملخص باللغة العربية
The discovery of spontaneous magnetism in van der Waal (vdW) magnetic monolayers has opened up an unprecedented platform for investigating magnetism in purely two-dimensional systems. Recently, it has been shown that the magnetic properties of vdW magnets can be easily tuned by adjusting the relative composition of halides. Motivated by these experimental advances, here we derive a model for a trihalide CrClBrI monolayer from symmetry principles and we find that, in contrast to its single-halide counterparts, it can display highly anisotropic nearest- and next-to-nearest neighbor Dzyaloshinskii-Moriya and Heisenberg interactions. Depending on the parameters, the DM interactions are responsible for the formation of exotic chiral spin states, such as skyrmions and spin cycloids, as shown by our Monte Carlo simulations. Focusing on a ground state with a two-sublattice unit cell, we find spin-wave bands with nonvanishing Chern numbers. The resulting magnon edge states yield a magnon thermal Hall conductivity that changes sign as function of temperature and magnetic field, suggesting chromium trihalides as a candidate for testing topological magnon transport in two-dimensional noncollinear spin systems.
The emerging field of nano-magnonics utilizes high-frequency waves of magnetization - the spin waves - for the transmission and processing of information on the nanoscale. The advent of spin-transfer torque has spurred significant advances in nano-ma
Chromium trihalides (CrI$_3$, CrBr$_3$ and CrCl$_3$) form a prominent family of isostructural insulating layered materials in which ferromagnetic order has been observed down to the monolayer. Here we provide a comprehensive computational study of ma
Topological materials have attracted considerable experimental and theoretical attention. They exhibit strong spin-orbit coupling both in the band structure (intrinsic) and in the impurity potentials (extrinsic), although the latter is often neglecte
We consider thermoelectric transport properties of the edge states of a two dimensional topological insulator in a double quantum point contact geometry coupled to two thermally biased reservoirs. Both spin-preserving and spin-flipping tunneling proc
Cavity magnonics deals with the interaction of magnons - elementary excitations in magnetic materials - and confined electromagnetic fields. We introduce the basic physics and review the experimental and theoretical progress of this young field that