ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin-thermoelectric transport induced by interactions and spin-flip processes in two dimensional topological insulators

299   0   0.0 ( 0 )
 نشر من قبل Luca Vannucci
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider thermoelectric transport properties of the edge states of a two dimensional topological insulator in a double quantum point contact geometry coupled to two thermally biased reservoirs. Both spin-preserving and spin-flipping tunneling processes between opposite edges are analyzed in the presence of electron-electron interactions. We demonstrate that the simultaneous presence of spin-flipping processes and interactions gives rise to a finite longitudinal spin current. Moreover, its sign and amplitude can be tuned by means of gate voltages with the possibility to generate a pure spin current, with a vanishing charge current.

قيم البحث

اقرأ أيضاً

Topological states of matter have attracted a lot of attention due to their many intriguing transport properties. In particular, two-dimensional topological insulators (2D TI) possess gapless counter propagating conducting edge channels, with opposit e spin, that are topologically protected from backscattering. Two basic features are supposed to confirm the existence of the ballistic edge channels in the submicrometer limit: the 4-terminal conductance is expected to be quantized at the universal value $2e^{2}/h$, and a nonlocal signal should appear due to a net current along the sample edge, carried by the helical states. On the other hand for longer channels the conductance has been found to deviate from the quantized value. This article reviewer the experimental and theoretical work related to the transport in two-dimensional topological insulators (2D-TI), based on HgTe quantum wells in zero magnetic field. We provide an overview of the basic mechanisms predicting a deviation from the quantized transport due to backscattering (accompanied by spin-flips) between the helical channels. We discuss the details of the model, which takes into account the edge and bulk contribution to the total current and reproduces the experimental results.
Excitation of a topological insulator by a high-frequency electric field of a laser radiation leads to a dc electric current in the helical edge channel whose direction and magnitude are sensitive to the radiation polarization and depend on the physi cal properties of the edge. We present an overview of theoretical and experimental studies of such edge photoelectric effects in two-dimensional topological insulators based on semiconductor quantum wells. First, we give a phenomenological description of edge photocurrents, which may originate from the photogalvanic effects or the photon drag effects, for edges of all possible symmetry. Then, we discuss microscopic mechanisms of photocurrent generation for different types of optical transitions involving helical edge states. They include direct and indirect optical transitions within the edge channel and edge-to-bulk optical transitions.
One of the most fascinating challenges in Physics is the realization of an electron-based counterpart of quantum optics, which requires the capability to generate and control single electron wave packets. The edge states of quantum spin Hall (QSH) sy stems, i.e. two-dimensional (2D) topological insulators realized in HgTe/CdTe and InAs/GaSb quantum wells, may turn the tide in the field, as they do not require the magnetic field that limits the implementations based on quantum Hall effect. Here we show that an electric pulse, localized in space and/or time and applied at a QSH edge, can photoexcite electron wavepackets by intra-branch electrical transitions, without invoking the bulk states or the Zeeman coupling. Such wavepackets are spin-polarised and propagate in opposite directions, with a density profile that is independent of the initial equilibrium temperature and that does not exhibit dispersion, as a result of the linearity of the spectrum and of the chiral anomaly characterising massless Dirac electrons. We also investigate the photoexcited energy distribution and show how, under appropriate circumstances, minimal excitations (Levitons) are generated. Furthermore, we show that the presence of a Rashba spin-orbit coupling can be exploited to tailor the shape of photoexcited wavepackets. Possible experimental realizations are also discussed.
We study the behavior of non-equilibrium spin density and spin-orbit torque in a topological insulator - antiferromagnet heterostructure. Unlike ferromagnetic heterostructures where Dirac cone is gapped due to time-reversal symmetry breaking, here th e Dirac cone is preserved. We demonstrate the existence of a staggered spin density corresponding to a damping like torque, which is quite robust against the scalar impurity, when the transport energy is in the topological insulator surface energy regime. We show the contribution to the non-equilibrium spin density due to both surface and bulk topological insulator bands. Finally, we show that the torques in topological insulator-antiferromagnet heterostructure exhibit an angular dependence that is consistent with the standard spin-orbit torque obtained in Rashba system with some additional nonlinear effects arising from the interfacial coupling.
We use microscopic linear response theory to derive a set of equations that provide a complete description of coupled spin and charge diffusive transport in a two-dimensional electron gas (2DEG) with the Rashba spin-orbit (SO) interaction. These equa tions capture a number of interrelated effects including spin accumulation and diffusion, Dyakonov-Perel spin relaxation, magnetoelectric, and spin-galvanic effects. They can be used under very general circumstances to model transport experiments in 2DEG systems that involve either electrical or optical spin injection. We comment on the relationship between these equations and the exact spin and charge density operator equations of motion. As an example of the application of our equations, we consider a simple electrical spin injection experiment and show that a voltage will develop between two ferromagnetic contacts if a spin-polarized current is injected into a 2DEG, that depends on the relative magnetization orientation of the contacts. This voltage is present even when the separation between the contacts is larger than the spin diffusion length.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا