ﻻ يوجد ملخص باللغة العربية
The Stepped Pressure Equilibrium Code (SPEC) [Hudson et al., Phys. Plasmas 19, 112502 (2012)] has been successful in the construction of equilibria in 3D configurations that contain a mixture of flux surfaces, islands and chaotic magnetic field lines. In this model, the plasma is sliced into sub-volumes separated by ideal interfaces, and in each volume the magnetic field is a Beltrami field. In the cases where the system is far from possessing a continuous symmetry, such as in stellarators, the existence of solutions to a stepped-pressure equilibrium with given constraints, such as a multi-region relaxed MHD minimum energy state, is not guaranteed but is often taken for granted. Using SPEC, we have studied two different scenarios in which a solution fails to exist in a slab with analytic boundary perturbations. We found that with a large boundary perturbation, a certain interface becomes fractal, corresponding to the break up of a Kolmogorov-Arnold-Moser (KAM) surface. Moreover, an interface can only support a maximum pressure jump while a solution of the magnetic field consistent with the force balance condition can be found. An interface closer to break-up can support a smaller pressure jump. We discovered that the pressure jump can push the interface closer to being non-smooth through force balance, thus significantly decreasing the maximum pressure it can support. Our work shows that a convergence study must be performed on a SPEC equilibrium with interfaces close to break-up. These results may also provide insights into the choice of interfaces and have applications in finding out the maximum pressure a machine can support.
Recent tokamak experiments employing off-axis, non-inductive current drive have found that a large central current hole can be produced. The current density is measured to be approximately zero in this region, though in principle there was sufficient
Neutral beam injection or ion cyclotron resonance heating induces pressure anisotropy. The axisymmetric plasma equilibrium code HELENA has been upgraded to include anisotropy and toroidal flow. With both analytical and numerical methods, we have stud
The Multi-region Relaxed MHD (MRxMHD) has been successful in the construction of equilibria in three-dimensional (3D) configurations. In MRxMHD, the plasma is sliced into sub-volumes separated by ideal interfaces, each undergoing relaxation, allowing
In three-dimensional ideal magnetohydrodynamics, closed flux surfaces cannot maintain both rational rotational-transform and pressure gradients, as these features together produce unphysical, infinite currents. A proposed set of equilibria nullifies
The structure of static MHD equilibria that admit continuous families of Euclidean symmetries is well understood. Such field configurations are governed by the classical Grad-Shafranov equation, which is a single elliptic PDE in two space dimensions.