ﻻ يوجد ملخص باللغة العربية
Neutral beam injection or ion cyclotron resonance heating induces pressure anisotropy. The axisymmetric plasma equilibrium code HELENA has been upgraded to include anisotropy and toroidal flow. With both analytical and numerical methods, we have studied the determinant factors in anisotropic equilibria and their impact on flux surfaces, magnetic axis shift, the displacement of pressures and density contours from flux surface. With $p_parallel/p_perp approx 1.5$, $p_perp$ can vary 20% on $s=0.5$ flux surface, in a MAST like equilibrium. We have also re-evaluated the widely applied approximation to anisotropy in which $p^*=(p_parallel + p_perp)/2$, the average of parallel and perpendicular pressure, is taken as the approximate isotropic pressure. We find the reconstructions of the same MAST discharge with $p_parallel/p_perp approx 1.25$, using isotropic and anisotropic model respectively, to have a 3% difference in toroidal field but a 66% difference in poloidal current.
The Hall term has often been neglected in MHD codes as it is difficult to compute. Nevertheless setting it aside for numerical reasons led to ignoring it altogether. This is especially problematic when dealing with tokamak physics as the Hall term cannot be neglected as this paper shows.
We have used the local-$delta{f}$ gyrokinetic code GS2 to perform studies of the effect of flux-surface shaping on two highly-shaped, low- and high-$beta$ JT-60SA-relevant equilibria, including a successful benchmark with the GKV code. We find a nove
A new force balance model for the EFIT magnetohydrodynamic equilibrium technique for tokamaks is presented which includes the full toroidal flow and anisotropy changes to the Grad-Shafranov equation. The free functions are poloidal flux functions and
We report on the impact of anisotropy to tokamak plasma configuration and stability. Our focus is on analysis of the impact of anisotropy on ITER pre-fusion power operation 5~MA, $B=1.8$~T ICRH scenarios. To model ITER scenarios remapping tools are d
Recent tokamak experiments employing off-axis, non-inductive current drive have found that a large central current hole can be produced. The current density is measured to be approximately zero in this region, though in principle there was sufficient