ترغب بنشر مسار تعليمي؟ اضغط هنا

LMC N132D: A mature supernova remnant with a power-law gamma-ray spectrum extending beyond 8 TeV

153   0   0.0 ( 0 )
 نشر من قبل Rachel Simoni
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyzed 252 hours of High Energy Stereoscopic System (H.E.S.S.) observations towards the supernova remnant (SNR) LMC N132D that were accumulated between December 2004 and March 2016 during a deep survey of the Large Magellanic Cloud, adding 104 hours of observations to the previously published data set to ensure a > 5 sigma detection. To broaden the gamma-ray spectral coverage required for modeling the spectral energy distribution, an analysis of Fermi-LAT Pass 8 data was also included. We unambiguously detect N132D at very high energies (VHE) with a significance of 5.7 sigma. We report the results of a detailed analysis of its spectrum and localization based on the extended H.E.S.S. data set. The joint analysis of the extended H.E.S.S and Fermi-LAT data results in a spectral energy distribution in the energy range from 1.7 GeV to 14.8 TeV, which suggests a high luminosity of N132D at GeV and TeV energies. We set a lower limit on a gamma-ray cutoff energy of 8 TeV with a confidence level of 95%. The new gamma-ray spectrum as well as multiwavelength observations of N132D when compared to physical models suggests a hadronic origin of the VHE gamma-ray emission. SNR N132D is a VHE gamma-ray source that shows a spectrum extending to the VHE domain without a spectral cutoff at a few TeV, unlike the younger oxygen-rich SNR Cassiopeia A. The gamma-ray properties of N132D may be affected by an interaction with a nearby molecular cloud that partially lies inside the 95% confidence region of the source position. [Abridged]



قيم البحث

اقرأ أيضاً

118 - Jacco Vink 2021
The supernova remnant LMC N132D is a remarkably luminous gamma-ray emitter at $sim$50 kpc with an age of $sim$2500 years. It belongs to the small group of oxygen-rich SNRs, which includes Cassiopeia A (Cas A) and Puppis A. N132D is interacting with a nearby molecular cloud. By adding 102 hours of new observations with the High Energy Stereoscopic System (H.E.S.S.) to the previously published data with exposure time of 150 hours, we achieve the significant detection of N132D at a 5.7$sigma$ level in the very high energy (VHE) domain. The gamma-ray spectrum is compatible with a single power law extending above 10 TeV. We set a lower limit on an exponential cutoff energy at 8 TeV with 95% CL. The multi-wavelength study supports a hadronic origin of VHE gamma-ray emission indicating the presence of sub-PeV cosmic-ray protons. The detection of N132D is remarkable since the TeV luminosity is higher than that of Cas A by more than an order of magnitude. Its luminosity is comparable to, or even exceeding the luminosity of RX J1713.7-3946 or HESS J1640-465. Moreover, the extended power-law tail in the VHE spectrum of N132D is surprising given both the exponential cutoff at 3.5 TeV in the spectrum of its 340-year-old sibling, Cassiopeia A, and the lack of TeV emission from a Fermi- LAT 2FHL source (E > 50 GeV) associated with Puppis A. We discuss a physical scenario leading to the enhancement of TeV emission via the interaction between N132D and a near molecular cloud.
152 - V. A. Acciari , E. Aliu , T. Arlen 2011
We report the discovery of TeV gamma-ray emission from the Type Ia supernova remnant (SNR) G120.1+1.4, known as Tychos supernova remnant. Observations performed in the period 2008-2010 with the VERITAS ground-based gamma-ray observatory reveal weak e mission coming from the direction of the remnant, compatible with a point source located at $00^{rm h} 25^{rm m} 27.0^{rm s}, +64^{circ} 10^{prime} 50^{primeprime}$ (J2000). The TeV photon spectrum measured by VERITAS can be described with a power-law $dN/dE = C(E/3.42;textrm{TeV})^{-Gamma}$ with $Gamma = 1.95 pm 0.51_{stat} pm 0.30_{sys}$ and $C = (1.55 pm 0.43_{stat} pm 0.47_{sys}) times 10^{-14}$ cm$^{-2}$s$^{-1}$TeV$^{-1}$. The integral flux above 1 TeV corresponds to $sim 0.9%$ percent of the steady Crab Nebula emission above the same energy, making it one of the weakest sources yet detected in TeV gamma rays. We present both leptonic and hadronic models which can describe the data. The lowest magnetic field allowed in these models is $sim 80 mu$G, which may be interpreted as evidence for magnetic field amplification.
The results of follow-up observations of the TeV gamma-ray source HESSJ 1640-465 from 2004 to 2011 with the High Energy Stereoscopic System (H.E.S.S.) are reported in this work. The spectrum is well described by an exponential cut-off power law with photon index Gamma=2.11 +/- 0.09_stat +/- 0.10_sys, and a cut-off energy of E_c = (6.0 +2.0 -1.2) TeV. The TeV emission is significantly extended and overlaps with the north-western part of the shell of the SNR G338.3-0.0. The new H.E.S.S. results, a re-analysis of archival XMM-Newton data, and multi-wavelength observations suggest that a significant part of the gamma-ray emission from HESS J1640-465 originates in the SNR shell. In a hadronic scenario, as suggested by the smooth connection of the GeV and TeV spectra, the product of total proton energy and mean target density could be as high as W_p n_H ~ 4 x 10^52 (d/10kpc)^2 erg cm^-3.
We report the discovery of an unidentified, extended source of very-high-energy (VHE) gamma-ray emission, VER J2019+407, within the radio shell of the supernova remnant SNR G78.2+2.1, using 21.4 hours of data taken by the VERITAS gamma-ray observator y in 2009. These data confirm the preliminary indications of gamma-ray emission previously seen in a two-year (2007-2009) blind survey of the Cygnus region by VERITAS. VER J2019+407, which is detected at a post-trials significance of 7.5 standard deviations in the 2009 data, is localized to the northwestern rim of the remnant in a region of enhanced radio and X-ray emission. It has an intrinsic extent of 0.23^{circ} pm 0.03^{circ} (stat)+0.04^{circ}_{-0.02}^{circ}(sys) and its spectrum is well-characterized by a differential power law (dN/dE = N_0 times (E/TeV)^{-Gamma}) with a photon index of {Gamma} = 2.37 pm 0.14 (stat) pm 0.20 (sys) and a flux normalization of N0 = 1.5 pm 0.2 (stat) pm 0.4(sys) times 10^-12 ph TeV^{-1} cm^{-2} s^{-1}. This yields an integral flux of 5.2 pm 0.8 (stat) pm 1.4 (sys) times 10^-12 ph cm^{-2} s^{-1} above 320 GeV, corresponding to 3.7% of the Crab Nebula flux. We consider the relationship of the TeV gamma-ray emission with the GeV gamma-ray emission seen from SNR G78.2+2.1 as well as that seen from a nearby cocoon of freshly accelerated cosmic rays. Multiple scenarios are considered as possible origins for the TeV gamma-ray emission, including hadronic particle acceleration at the supernova remnant shock.
We present the Suzaku results of a supernova remnant (SNR), G359.1-0.5 in the direction of the Galactic center region. From the SNR, we find prominent K-shell lines of highly ionized Si and S ions, together with unusual structures at 2.5-3.0 and 3.1- 3.6 keV. No canonical SNR plasma model, in either ionization equilibrium or under-ionization, can explain the structures. The energies and shapes of the structures are similar to those of the radiative transitions of free electrons to the K-shell of He-like Si and S ions (radiative recombination continuum: RRC). The presence of the strong RRC structures indicates that the plasma is in over-ionization. In fact, the observed spectrum is well fitted with an over-ionized plasma model. The best-fit electron temperature of 0.29 keV is far smaller than the ionization temperature of 0.77 keV, which means that G359.1-0.5 is in extreme condition of over-ionization. We report some cautions on the physical parameters, and comment possible origins for the over-ionized plasma.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا