ﻻ يوجد ملخص باللغة العربية
We report the discovery of an unidentified, extended source of very-high-energy (VHE) gamma-ray emission, VER J2019+407, within the radio shell of the supernova remnant SNR G78.2+2.1, using 21.4 hours of data taken by the VERITAS gamma-ray observatory in 2009. These data confirm the preliminary indications of gamma-ray emission previously seen in a two-year (2007-2009) blind survey of the Cygnus region by VERITAS. VER J2019+407, which is detected at a post-trials significance of 7.5 standard deviations in the 2009 data, is localized to the northwestern rim of the remnant in a region of enhanced radio and X-ray emission. It has an intrinsic extent of 0.23^{circ} pm 0.03^{circ} (stat)+0.04^{circ}_{-0.02}^{circ}(sys) and its spectrum is well-characterized by a differential power law (dN/dE = N_0 times (E/TeV)^{-Gamma}) with a photon index of {Gamma} = 2.37 pm 0.14 (stat) pm 0.20 (sys) and a flux normalization of N0 = 1.5 pm 0.2 (stat) pm 0.4(sys) times 10^-12 ph TeV^{-1} cm^{-2} s^{-1}. This yields an integral flux of 5.2 pm 0.8 (stat) pm 1.4 (sys) times 10^-12 ph cm^{-2} s^{-1} above 320 GeV, corresponding to 3.7% of the Crab Nebula flux. We consider the relationship of the TeV gamma-ray emission with the GeV gamma-ray emission seen from SNR G78.2+2.1 as well as that seen from a nearby cocoon of freshly accelerated cosmic rays. Multiple scenarios are considered as possible origins for the TeV gamma-ray emission, including hadronic particle acceleration at the supernova remnant shock.
We present a study on the gamma-ray emission detected by the AGILE-GRID from the region of the SNR G78.2+2.1 (Gamma Cygni). In order to investigate the possible presence of gamma rays associated with the SNR below 1 GeV, it is necessary to analyze th
We report the discovery of TeV gamma-ray emission from the Type Ia supernova remnant (SNR) G120.1+1.4, known as Tychos supernova remnant. Observations performed in the period 2008-2010 with the VERITAS ground-based gamma-ray observatory reveal weak e
Supernova remnants (SNRs) are widely considered the most likely source of cosmic rays below the knee ($10^{15}$ eV). Studies of GeV and TeV gamma-ray emission in the vicinity of SNRs, in combination with multi-wavelength observations, can trace and c
Context. Diffusive shock acceleration (DSA) is the most promising mechanism to accelerate Galactic cosmic rays (CRs) in the shocks of supernova remnants (SNRs). The turbulence upstream is supposedly generated by the CRs, but this process is not well
SNR G24.7+0.6 is a 9.5 kyrs radio and $gamma$-ray supernova remnant evolving in a dense medium. In the GeV regime, SNR G24.7+0.6 (3FHL,J1834.1--0706e/FGES,J1834.1--0706) shows a hard spectral index ($Gamma$$sim$2) up to $200$,GeV, which makes it a go