ترغب بنشر مسار تعليمي؟ اضغط هنا

Theory of Huge Thermoelectric Effect Based on Magnon Drag Mechanism: Application to Thin-Film Heusler Alloy

126   0   0.0 ( 0 )
 نشر من قبل Hiroyasu Matsuura
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

To understand the unexpectedly high thermoelectric performance observed in the thin-film Heusler alloy Fe$_2$V$_{0.8}$W$_{0.2}$Al, we study the magnon drag effect, generated by the tungsten based impurity band, as a possible source of this enhancement, in analogy to the phonon drag observed in FeSb$_2$. Assuming that the thin-film Heusler alloy has a conduction band integrating with the impurity band, originated by the tungsten substitution, we derive the electrical conductivity $L_{11}$ based on the self-consistent t-matrix approximation and the thermoelectric conductivity $L_{12}$ due to magnon drag, based on the linear response theory, and estimate the temperature dependent electrical resistivity, Seebeck coefficient and power factor. Finally, we compare the theoretical results with the experimental results of the thin-film Heusler alloy to show that the origin of the exceptional thermoelectric properties is likely to be due to the magnon drag related with the tungsten-based impurity band.



قيم البحث

اقرأ أيضاً

Lee, Rice and Anderson, in their monumental paper, have proved the existence of a collective mode describing the coupled motion of electron density and phonons in one-dimensional incommensurate charge density wave (CDW) in the Peierls state. This mod e, which represents the coherent sliding motion of electrons and lattice distortions and affects low energy transport properties, is described by the phase of the complex order parameter of the Peierls condensate, leading to Frohlich superconductivity in pure systems. Once spatial disorder is present, however, phason is pinned and system is transformed into an insulating ground state: a dramatic change. Since phason can be considered as an ultimate of phonon drag effect, it is of interest to see its effects on thermoelectricity, which has been studied in the present paper based linear response theory of Kubo and Luttinger. The result indicates that a large absolute value of Seebeck coefficient proportional to the square root of resistivity is expected at low temperatures k_B T/Delta <<1 (Delta: Peierls gap) with opposite sign to the electronic contributions in the absence of Peierls gap.
We determine experimentally the spin structure of half-metallic Co2FeAl0.4Si0.6 Heusler alloy elements using magnetic microscopy. Following magnetic saturation, the dominant magnetic states consist of quasi-uniform configurations, where a strong infl uence from the magnetocrystalline anisotropy is visible. Heating experiments show the stability of the spin configuration of domain walls in confined geometries up to 800 K. The switching temperature for the transition from transverse to vortex walls in ring elements is found to increase with ring width, an effect attributed to structural changes and consequent changes in magnetic anisotropy, which start to occur in the narrower elements at lower temperatures.
We investigate the high temperature thermoelectric properties of Heusler alloys Fe2-xMnxCrAl (0<x<1). Substitution of 12.5% Mn at Fe-site (x = 0.25) causes a significant increase in high temperature resistivity (r{ho}) and an enhancement in the Seebe ck coefficient (S), as compared to the parent alloy. However, as the concentration of Mn is increased above 0.25, a systematic decrement in the magnitude of both parameters is noted. These observations have been ascribed (from theoretical analysis) to a change in band gap and electronic structure of Fe2CrAl with Mn-substitution. Due to absence of mass fluctuations and lattice strain, no significant change in thermal conductivity is seen across this series of Heusler alloys. Additionally, S drastically changes its magnitude along with a crossover from negative to positive above 900 K, which has been ascribed to the dominance of holes over electrons in high temperature regime. In this series of alloys, S and r{ho} shows a strong dependence on the carrier concentration and strength of d-d hybridization between Fe/Mn and Cr atoms.
Co2FeSi, a Heusler alloy with the highest magnetic moment per unit cell and the highest Curie temperature, has largely been described theoretically as a half-metal. This conclusion, however, disagrees with Point Contact Andreev Reflection (PCAR) spec troscopy measurements, which give much lower values of spin polarization, P. Here, we present the spin polarization measurements of Co2FeSi by the PCAR technique, along with a thorough computational exploration, within the DFT and a GGA+U approach, of the Coulomb exchange U-parameters for Co and Fe atoms, taking into account spin-orbit coupling. We find that the orbital contribution (mo) to the total magnetic moment (mT) is significant, since it is at least 3 times greater than the experimental uncertainty of mT. Account of mo radically affects the acceptable values of U. Specifically, we find no values of U that would simultaneously satisfy the experimental values of the magnetic moment and result in the half-metallicity of Co2FeSi. On the other hand, the ranges of U that we report as acceptable are compatible with spin polarization measurements (ours and the ones found in the literature), which all are within approximately 40-60% range. Thus, based on reconciling experimental and computational results, we conclude that: a) spin-orbit coupling cannot be neglected in calculating Co2FeSi magnetic properties, and b) Co2FeSi Heusler alloy is not half-metallic. We believe that our approach can be applied to other Heusler alloys such as Co2FeAl.
94 - Simon Fischer 2020
Strain engineering vanadium dioxide thin films is one way to alter this materials characteristic first order transition from semiconductor to metal. In this study we extend the exploitable strain regime by utilizing the very large lattice mismatch of 8.78 % occurring in the VO$_2$/RuO$_2$ system along the c axis of the rutile structure. We have grown VO$_2$ thin films on single domain RuO$_2$ islands of two distinct surface orientations by atomic oxygen-supported reactive MBE. These films were examined by spatially resolved photoelectron and x-ray absorption spectroscopy, confirming the correct stoichiometry. Low energy electron diffraction then reveals the VO$_2$ films to grow indeed fully strained on RuO$_2$(110), exhibiting a previously unreported ($2times2$) reconstruction. On TiO$_2$(110) substrates, we reproduce this reconstruction and attribute it to an oxygen-rich termination caused by the high oxygen chemical potential. On RuO$_2$(100) on the other hand, the films grow fully relaxed. Hence, the presented growth method allows for simultaneous access to a remarkable strain window ranging from bulk-like structures to massively strained regions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا