ﻻ يوجد ملخص باللغة العربية
We investigate the high temperature thermoelectric properties of Heusler alloys Fe2-xMnxCrAl (0<x<1). Substitution of 12.5% Mn at Fe-site (x = 0.25) causes a significant increase in high temperature resistivity (r{ho}) and an enhancement in the Seebeck coefficient (S), as compared to the parent alloy. However, as the concentration of Mn is increased above 0.25, a systematic decrement in the magnitude of both parameters is noted. These observations have been ascribed (from theoretical analysis) to a change in band gap and electronic structure of Fe2CrAl with Mn-substitution. Due to absence of mass fluctuations and lattice strain, no significant change in thermal conductivity is seen across this series of Heusler alloys. Additionally, S drastically changes its magnitude along with a crossover from negative to positive above 900 K, which has been ascribed to the dominance of holes over electrons in high temperature regime. In this series of alloys, S and r{ho} shows a strong dependence on the carrier concentration and strength of d-d hybridization between Fe/Mn and Cr atoms.
We have investigated the electronic and thermoelectric properties of half-Heusler alloys NiTZ (T = Sc, and Ti; Z = P, As, Sn, and Sb) having 18 valence electron. Calculations are performed by means of density functional theory and Boltzmann transport
To understand the unexpectedly high thermoelectric performance observed in the thin-film Heusler alloy Fe$_2$V$_{0.8}$W$_{0.2}$Al, we study the magnon drag effect, generated by the tungsten based impurity band, as a possible source of this enhancemen
We investigate the dependence of the electrical resistivity of $sim 60 $nm thick single crystalline graphite samples on the defect concentration produced by proton irradiation at very low fluences. We show that the resistivity decreases few percent a
We study anomalous Hall conductivity ($sigma$$_{rm AHC}$) and electronic band structures of Si-substituted Mn$_{2}$CoAl (Mn$_{2}$CoAl$_{1-x}$Si$_{x}$). First-principles calculations reveal that the electronic band structure is like a spin-gapless sys
Co2FeSi, a Heusler alloy with the highest magnetic moment per unit cell and the highest Curie temperature, has largely been described theoretically as a half-metal. This conclusion, however, disagrees with Point Contact Andreev Reflection (PCAR) spec